Universidade Federal de Alfenas - UNIFAL Instituto de Ciências Sociais Aplicadas - ICSA

MATHEUS SARAIVA ALCINO

Impacto da estrutura de precificação na seleção adversa e loss coverage

Impacto da estrutura de precificação na seleção adversa e loss coverage

Trabalho de Conclusão de Curso apresentado como parte dos requisitos para obtenção do título de Bacharel em Ciências Atuariais pelo Instituto de Ciências Sociais Aplicadas da Universidade Federal de Alfenas – campus Varginha.

Orientador: Reinaldo Antônio Gomes Marques

MATHEUS SARAIVA ALCINO

Impacto da estrutura de precificação na seleção adversa e loss coverage

Varginha, 09 de novembro de 2019

Aprovado:		
	Luisa Pimenta Terra	
Aprovado:		
	Reinaldo Antônio Gomes Marques	
Aprovado:		
	Suelen Amelia de Almeida	

Resumo

O objetivo deste trabalho é identificar o fenômeno da seleção adversa em uma carteira de planos individuais de uma operadora de saúde suplementar e estudar a relação entre este fenômeno com o conceito de loss coverage. O processo de identificação de seleção adversa envolve a construção de indicadores próprios de risco individual, com algumas limitações. Os resultados apontam que para a carteira de clientes analisada foi encontrada seleção adversa. Além disso, algumas mudanças nas regras de precificação da ANS poderiam aumentar a proporção da população coberta por um plano de saúde individual, mas com o ônus da seleção adversa.

Palavras-chave: Seleção adversa, saúde suplementar, risco, perda de cobertura

Sumário

1	Inti	roduçã	0	7
2	Ref	erencia	al teórico	8
3	Me	todolog	gia	10
	3.1	Seleçã	To adversa e loss coverage – LC	 11
	3.2	Mensu	uração do risco individual	 17
		3.2.1	Risk ex ante	 17
		3.2.2	Risk ex post	 18
4	Res	sultado	os	23
5	Cor	nclusão	1	26

Lista de Gráficos

1	Relação entre prêmio e faixa etária para cada regra criada	16
2	Relação entre idade e custos com saúde.	17
1	Pessoas-ano por idades simples ao longo dos anos	19
2	Dispersão da quantidade de pessoas-ano por ano de análise	19
3	Idade média daqueles que saíram do plano exceto pela causa óbito	20
3	Histograma e $boxplot$ do risco α	22
4	Cenários para a taxa de seleção adversa	24
4	$Loss$ $coverage$ ancorado pelas Regras base ANS, em função de λ para	
	diferentes regras de precificação e parâmetro de risco	25
	Lista de Equações	
1	Perda esperada	11
2	Cobertura esperada	11
3	Loss coverage	12
4	Indenização por apólice	12
5	Equação diferencial ordinária da função de demanda	12
6a	Solução EDO	13
6b	Fator integrante	13
7	Função de demanda iso-elástica	13
8	Seleção adversa	14
9	Ações de demanda de prêmio justo	14
10	Taxa de seleção adversa	14
11	Pessoas-ano	18
12	Ponto crítico para classificação de risco	21
13	Definição dos usuários que representam risco	21
14	Soma total de risco para cada usuário	21
15	Exposição individual	21
16	Risco α	22
17	Regras ancoradas pela ANS	24

1 Introdução

O mercado de saúde suplementar brasileiro passou a ser regulamentado após a criação da Lei nº 9.656 de 1998, que passou a vigorar em 1º de Janeiro de 1999. Dois anos após a criação desta lei foi criada a Agência Nacional de Saúde Suplementar – ANS, criada através da Lei 9.961/2000. A ANS é a agência reguladora, vinculada ao Ministério da Saúde, responsável por planos de saúde privados no país e possui muitas atribuições as quais se resumem em regulamentar e fiscalizar o mercado de saúde suplementar nacional.

O trabalho de fiscalização e regulação da ANS no mercado de saúde brasileiro tem desenvolvido o setor no país. Segundo a própria agência, em junho de 2019 foram registrados 47,3 milhões de beneficiários em planos privados de assistência médica com ou sem odontologia, uma variação de 11,2% nos últimos dez anos. Entretanto, existem alguns desafios inerentes ao cenário da saúde suplementar que podem dificultar a continuidade de tal desenvolvimento, como por exemplo o risco moral¹ e a seleção adversa.

A saúde suplementar incorpora incertezas que fazem a aleatoriedade assumir um comportamento de difícil controle. Assim, há dificuldades na precificação de serviços ofertados e, no contexto brasileiro, a legislação que rege este mercado ainda contém alguns fatores amplificadores destas dificuldades. Dentro de todos os desafios presentes no mercado segurador da saúde, este trabalho busca estudar especificamente o problema da seleção adversa em uma carteira de planos individuais de uma operadora de saúde suplementar do Brasil. A abordagem da precificação dos serviços da saúde suplementar converge para o conceito de perda de cobertura (loss coverage), que será desenvolvido na seção referente à metodologia deste estudo. Dessa forma, o objetivo deste trabalho não é encontrar os fatores que geram seleção adversa na carteira estudada, mas explorar a relação entre o conceito de seleção adversa e de perda de cobertura.

A partir deste objetivo, as perguntas que este estudo pretende responder são:

- Existe o fenômeno da seleção adversa na carteira de clientes analisada?
- Qual seria o resultado, em termos de perda de cobertura, se houvesse outras formas de precificação que não obedeçam às regras atuais (estabelecidas pela ANS)?

A problematização que leva ao surgimento destas perguntas tem suas raízes em alguns fenômenos demográficos que a população brasileira enfrenta atualmente. O envelhecimento populacional e o aumento da morbidade, por exemplo, causarão um aumento na demanda do governo por recursos para os setores de previdência e saúde. A mudança na estrutura etária causada pelo envelhecimento populacional deixa a população mais exposta à algumas

¹Uma das possíveis formas de risco moral é a sobreutilização de procedimentos cobertos pelo plano, ocasionada por uma mudança de comportamento por parte do provedor ou consumidor (MAIA, 2004).

doenças cujo tratamento requer recursos de difícil acesso pelas vias públicas. Portanto, a importância da discussão de temas como este se dá pelo fato de que os fenômenos demográficos enfrentados pela população brasileira são fatores que a faz procurar produtos da saúde suplementar, uma vez que a saúde pública ofertada pelo estado não é capaz de cobrir toda a população de forma eficiente (DE ANDRADE et al, 2010). Além disso, em um contexto financeiro, De Andrade et al (2010) afirmam que o sistema público de saúde brasileiro e a saúde complementar erram de forma igual: o SUS não consegue cumprir todas as suas demandas por falta de recursos e gestões ineficientes e, no caso da saúde suplementar, o mesmo acontece porque os agentes do mercado de saúde objetivam o lucro e, se cumprirem todas as suas demandas, o mesmo será prejudicado.

2 Referencial teórico

A seleção adversa pode ser caracterizada pela atração de beneficiários, por parte da seguradora, que representam um risco indesejado e a expulsão daqueles com risco desejado (MAIA, 2004). Isso acontece principalmente pela assimetria de informação que, por sua vez, pode ser gerada por muitos fatores, como a divergência em diagnósticos médicos ou até mesmo a má-fé do cliente (no sentido de omissão de alguma informação).

Além disso, Maia (2004) afirma que a seleção adversa é caracterizada pela seleção (antes do estabelecimento do contrato) de um grupo com maior risco que o risco médio da sociedade. Esta seleção acontece porque não é possível discriminar cada indivíduo de acordo com o grau de risco.

Existe também uma definição de seleção adversa, dada por Winssen et al (2018), que a caracteriza como uma propensão a um incentivo mais forte a adquirir um seguro complementar por indivíduos de alto risco ou para estender sua cobertura em comparação com indivíduos de baixo risco. Se existirem fatores (incentivos) que promovam a atração de indivíduos de alto risco para uma carteira de clientes e, além disso, estes mesmos fatores promoverem também a expulsão daqueles que representam um baixo risco, por consequência o que ocorre é uma mudança na composição do grau de risco da carteira de clientes, denominada seleção adversa.

A força mecânica que governa qualquer sistema segurador é o princípio do mutualismo, que garante à uma seguradora que contenha uma carteira diversificada, que as perdas ocorridas com baixas probabilidades sejam compensadas por ganhos também ocorridos com baixas probabilidades. Contudo, quando uma carteira de beneficiários de uma seguradora de saúde contrai a seleção adversa, este princípio pode estar ameaçado. Primeiro, porque o processo de identificação deste fenômeno não é algo trivial e, segundo, pela dificuldade de tratá-la e reestabelecer o equilíbrio atuarial.

No estudo sobre a seleção adversa em seguradoras de saúde holandesas, de Winssen et al (2018), é mostrado através de simulações que tal problema poderia ser neutralizado de forma modesta se as seguradoras tivessem diferentes valores de prêmios para 28 grupos etários e de sexo, além de adotarem uma classificação de risco melhor estruturada. Tal estratégia no Brasil não seria possível, uma vez que, de acordo com a Lei 9.656/98, os valores de prêmio do mercado da saúde suplementar apenas podem ser calculados a partir de um único parâmetro, o fator idade. Além disso, através da resolução normativa nº 63, de Dezembro de 2003, a ANS determinou uma alteração de 7 grupos etários para 10 grupos etários, como também estabeleceu que os reajustes devem ocorrer anualmente e por mudança de faixa etária.

Existem outras imposições legais operacionalizadas pela ANS que garantem que os produtos da saúde suplementar se tornem mais acessíveis à população, mas que em contrapartida acabam se tornando os incentivos mencionados por Winssen et al (2018) e que podem causar seleção adversa. O artigo 3°, inciso primeiro da RN 63, de 2003 da ANS, exige que o valor fixado para a última faixa etária não poderá ser superior a seis vezes o valor da primeira faixa etária. Isso normalmente faz com que a diferença entre as contraprestações dos primeiros grupos etários (de menor risco) e do último grupo etário (de maior risco) não seja de magnitude adequada atuarialmente. Assim, no caso do grupo de menor risco, o prêmio pago tende a ser maior do que o prêmio de risco que deveria ser pago (não apenas por causa do acréscimo de carregamentos), sendo muitas vezes um incentivo à saída dessas pessoas da carteira de clientes. No caso do grupo de maior risco (última faixa etária estabelecida pela ANS), o prêmio pago por seus integrantes tende a ser menor do que o prêmio de risco que deveria ser pago por eles, sendo muitas vezes um incentivo à entrada dessas pessoas nessa carteira.

A resolução normativa nº 63 da ANS ainda impõe que a variação acumulada entre a sétima e a décima faixas não poderá ser superior à variação acumulada entre a primeira e a sétima faixas, além de estabelecer que não deve haver variação negativa na precificação entre qualquer faixa. Portanto, a legislação (talvez pela busca de maior acessibilidade social da saúde suplementar) não permite que o prêmio estabelecido pelas operadoras de saúde seja um valor que represente de forma adequada o risco de cada beneficiário. Tal dinâmica força um melhor desempenho do mutualismo, porém sob piores condições.

Thomas (2007) apresenta outro ponto de vista sobre a seleção adversa. Dentre suas conclusões, o autor defende que a seleção adversa pode não ser sempre adversa. Isto porque muitas vezes aqueles que procuram por um tipo de seguro, em especial de saúde, são pessoas que provavelmente precisarão dele. Além disso, o autor argumenta que a seleção adversa (em determinado grau) é necessária para que, do ponto de vista social, este seguro seja um produto acessível. Neste sentido, o autor afirma que o nível ideal de seleção adversa é provavelmente o nível que maximiza a perda de cobertura (loss coverage

– LC).

O índice de LC mostra a proporção da população que poderia ser coberta dada uma intensidade de risco conhecido na população coberta e na população exposta. Loss Coverage pode ser entendido como uma razão de proporções, ou seja, os eventos de perda cobertos que foram observados na carteira sobre os eventos de perda esperados. O desafio portanto, é definir qual a proporção da população, da qual a amostra (carteira de beneficiários) foi retirada, que está contida no grupo de risco considerado alto na população.

Assim, a relação que se pode estabelecer entre a seleção adversa e o índice de *loss coverage* é que na medida em que a carteira de clientes aumenta, com o objetivo de maximizar as perdas de cobertura, é natural que se atraia beneficiários que aumentarão a seleção adversa mas, por outro lado, atrair-se-ão pessoas que pertencerão ao grupo de clientes de baixo risco. Dessa forma, o mutualismo volta a funcionar de maneira menos forçada e, por este motivo, mesmo que a carteira de clientes da operadora de saúde contraia a seleção adversa, este fato nem sempre é uma coisa ruim (HAO *et al*, 2015).

3 Metodologia

A metodologia deste estudo consiste em analisar a carteira de beneficiários de um plano de saúde individual através dos índices de seleção adversa e loss coverage -LC, definidos durante a subseção 3.1. Estes índices são funções que dependem de um parâmetro de risco, que por sua vez é definido na subseção 3.2.2.

Os dados utilizados neste estudo são referentes a uma carteira de clientes de uma operadora de saúde suplementar brasileira. As informações utilizadas do banco de dados podem ser organizadas em dois grupos: informações categóricas e informações numéricas que compreendem o horizonte temporal de Janeiro de 2011 a Dezembro de 2017.

Os dados de despesas assistenciais e contraprestações foram inflacionados tendo como base o índice IPCA, calculado pelo IBGE. Entende-se que a utilização deste índice como fator inflacionador pode não ser à melhor escolha devido a inflação médica.

Foi necessária também a utilização de dados referentes à taxa de cobertura de cada faixa etária estabelecida pela ANS, do município em que a operadora de saúde suplementar analisada está inserida e também do Brasil, referente ao ano de 2017. Tais informações foram retiradas de uma base de dados do Instituto Brasileiro de Geografia e Estatística – IBGE².

Todas as informações são referentes a uma amostra de 66.252 beneficiários de uma

²A base de dados se refere ao sistema IBGE de recuperação automática – SIDRA.

carteira de planos individuais e foram tratadas sob a linguagem de programação R (R Core Team, 2019). O código de implementação das principais funções utilizadas está disponível no sítio eletrônico (https://github.com/osaraivamatheus/tcc.git).

Após a construção dos insumos para o índice LC, a análise proposta consiste em estabelecer relações entre risco e algumas estatísticas da carteira de clientes, além de apresentar os resultados do índice.

3.1 Seleção adversa e $loss\ coverage\ -\ LC$

O método utilizado para mensurar a seleção adversa e a perda de cobertura (LC) são apresentados nesta seção e, tem como base o estudo de Hao *et al* (2015).

Primeiramente deve-se dividir a população em grupos de alto e baixo risco. Para que seja feita esta classificação será utilizado neste estudo o parâmetro de risco (α) elaborado na seção 3.2.2.

Sejam μ_1 e μ_2 as probabilidades de perda; p_1 e p_2 a proporção da população pertencente a cada grupo de risco respectivamente. Para simplificar, os autores sugerem assumir que todas as perdas possuem a mesma magnitude. A perda esperada é então dada pela equação (1).

$$E[L] = \mu_1 p_1 + \mu_2 p_2 \,, \tag{1}$$

em que L é a perda para um risco escolhido para uma amostra aleatória da população completa.

Se as informações de risco são conhecidas, as seguradoras conseguem diferenciar os grupos de risco e assim definir prêmios de risco (π_1, π_2) para cada um deles. A cobertura de seguro esperada é dada pela equação (2).

$$E[Q] = d(\mu_1, \pi_1)p_1 + d(\mu_2, \pi_2)p_2, \qquad (2)$$

em que $d(\mu_i, \pi_i)$, para i = [1, 2], é uma função que resulta na probabilidade de que um indivíduo selecionado aleatoriamente do grupo de risco i compre um seguro, dado um prêmio π_i .

O índice de loss coverage, ou de perdas de cobertura, é dado pela equação (3).

$$E[QL] = d(\mu_1, \pi_1)p_1\mu_1 + d(\mu_2, \pi_2)p_2\mu_2.$$
(3)

De forma geral, ou seja, quando houver mais do que dois grupos de classificação de risco, a equação (3) seria:

$$E[QL] = \sum_{i=1}^{k} d(\mu_i, \pi_i) p_i \mu_i ,$$

em que k é a quantidade de grupos de risco, como por exemplo as faixas etárias.

Para o cálculo da equação (3), os autores assumem a premissa de que não há incidência de risco moral, assim a compra de seguro não tem qualquer influência sobre o risco. A perda de cobertura também pode ser entendida, segundo os autores, como uma demanda de seguro ponderada pelo risco.

Para que se obtenha a esperança de indenização por apólice basta dividir a equação (3) pela equação (2).

$$\rho(\pi_1, \pi_2) = \frac{E[QL]}{E[Q]} = \frac{d(\mu_1, \pi_1)p_1\mu_1 + d(\mu_2, \pi_2)p_2\mu_2}{d(\mu_1, \pi_1)p_1 + d(\mu_2, \pi_2)p_2},$$
(4)

e de forma geral,

$$\rho(\pi) = \frac{\sum_{i=1}^{k} d(\mu_i, \pi_i) p_i \mu_i}{\sum_{i=1}^{k} d(\mu_i, \pi_i) p_i},$$

em que k é a quantidade de grupos de risco.

A função $d(\mu_i, \pi_i)$ requer um tratamento mais cuidadoso. Os criadores do modelo, Hao et al (2015), sugerem uma função (equação (5)) que satisfaz os axiomas definidos por De Jong et al (2006) para uma função de demanda por seguro.

$$-\frac{\pi_i}{d(\mu_i, \pi_i)} \frac{\partial d(\mu_i, \pi_i)}{\partial \pi_i} = \lambda , \qquad (5)$$

em que λ representa a demanda de mercado, ou em outras palavras, a propensão à entrada de pessoas no plano de saúde.

A equação (5) se caracteriza como uma equação diferencial ordinária linear de primeira

ordem, e sua solução pode ser alcançada através do método do fator integrante, como é mostrado na equação (6a).

$$\frac{\partial d(\mu_i, \pi_i)}{\partial \pi_i} = -\frac{\lambda}{\pi_i} d(\mu_i, \pi_i)$$

$$\frac{\partial d(\mu_i, \pi_i)}{\partial \pi_i} + \frac{\lambda}{\pi_i} d(\mu_i, \pi_i) = 0.$$
(6a)

O fator integrante é dado pela equação (6b).

$$e^{\int \frac{\lambda}{\pi_i} d\pi_i} = e^{\lambda \ln(\pi_i)} = e^{\ln(\pi_i^{\lambda})} = \pi_i^{\lambda} . \tag{6b}$$

Continuando (6a), tem-se que:

$$\pi_i^{\lambda} \frac{\partial d(\mu_i, \pi_i)}{\partial \pi_i} + \pi_i^{\lambda} \frac{\lambda}{\pi_i} d(\mu_i, \pi_i) = \pi_i^{\lambda} 0$$

$$\pi_i^{\lambda} \frac{\partial d(\mu_i, \pi_i)}{\partial \pi_i} + \lambda \pi_i^{\lambda - 1} d(\mu_i, \pi_i) = 0$$

$$\int \frac{\partial}{\partial \pi_i} (\pi_i^{\lambda} d(\mu_i, \pi_i)) d\pi_i = \int 0 d\pi_i$$

$$\pi_i^{\lambda} d(\mu_i, \pi_i) = 0 + C$$

$$d(\mu_i, \pi_i) = C \frac{1}{\pi_i^{\lambda}},$$

em que C é a constante de integração. Com a manipulação de tal constante, os autores Hao $et\ al\ (2015)$ encontram como resultado de (6a) uma função de demanda iso-elástica dada pela equação (7).

$$d(\mu_i, \pi_i) = \tau_i \left(\frac{\pi_i}{\mu_i}\right)^{-\lambda} , \qquad (7)$$

em que $\tau_i = d(\mu_i, \mu_i)$ é "demanda de prêmio justo" para o seguro para o grupo de risco i, ou seja, é a probabilidade de que um membro da amostra aleatoriamente do grupo de risco i adquira seguro quando os prêmios são atuarialmente justos. O sinal de menos no parâmetro λ se justifica porque um aumento no prêmio implica uma queda na demanda

(THOMAS, 2018).

A seleção adversa também é definida como uma correlação (ou covariância) positiva entre as perdas e a cobertura (HAO *et al*, 2015). De acordo com estes autores, a seleção adversa pode ser mensurada através do quociente dado pela equação (8).

Seleção adversa =
$$\frac{E[QL]}{E[Q]E[L]}$$

$$= \frac{\rho(\pi_1, \pi_2)}{E[L]}$$

$$= \frac{\left(\frac{d(\mu_1, \pi_1)p_1\mu_1 + d(\mu_2, \pi_2)p_2\mu_2}{d(\mu_1, \pi_1)p_1 + d(\mu_2, \pi_2)p_2}\right)}{\mu_1 p_1 + \mu_2 p_2}$$

$$= \left(\frac{d(\mu_1, \pi_1)p_1\mu_1 + d(\mu_2, \pi_2)p_2\mu_2}{d(\mu_1, \pi_1)p_1 + d(\mu_2, \pi_2)p_2\mu_2}\right) \left(\frac{1}{\mu_1 p_1 + \mu_2 p_2}\right) .$$
(8)

Para que se possa comparar a severidade de seleção adversa sob diferentes classificações de risco é necessário relativizá-la. Para isso, Hao et al (2015) a relativizam utilizando definição de ações de demanda de prêmio justo, como é mostrado na equação (9).

$$\gamma_i = \frac{\tau_i p_i}{\tau_1 p_1 + \tau_2 p_2}, \quad i = 1, 2 \tag{9}$$

Assim, a taxa de seleção adversa é expressa pela equação (10).

Taxa de seleção adversa =
$$\frac{\rho(\pi_1, \pi_2)}{\gamma_1 \mu_1 + \gamma_2 \mu_2}$$

$$= \frac{\left(\frac{d(\mu_1, \pi_1) p_1 \mu_1 + d(\mu_2, \pi_2) p_2 \mu_2}{d(\mu_1, \pi_1) p_1 + d(\mu_2, \pi_2) p_2}\right)}{\gamma_1 \mu_1 + \gamma_2 \mu_2}$$

$$= \left(\frac{d(\mu_1, \pi_1) p_1 \mu_1 + d(\mu_2, \pi_2) p_2 \mu_2}{d(\mu_1, \pi_1) p_1 + d(\mu_2, \pi_2) p_2 \mu_2}\right) \left(\frac{1}{\gamma_1 \mu_1 + \gamma_2 \mu_2}\right) .$$
(10)

De forma geral, a equação (10) seria:

Taxa de seleção adversa =
$$\left(\frac{\sum_{i=1}^k d(\mu_i, \pi_i) p_i \mu_i}{\sum_{i=1}^k d(\mu_i, \pi_i) p_i} \right) \left(\frac{1}{\sum_{i=1}^k \gamma_i \mu_i} \right) \,,$$

em que k é a quantidade de grupos de risco.

A utilização das equações gerais apresentadas nesta seção permite a realização de análises complementares. O objetivo de reescrever o índice de LC na forma generalizada é criar cenários distintos afim de descobrir se com diferentes regras de precificação o índice aumentaria. Com relação ao caso geral da equação (3), que diz respeito ao índice de loss coverage, neste estudo considera-se cada grupo de risco μ_i , i = [1, ..., 10] como sendo uma faixa etária estabelecida pela RN nº 63 da ANS. Dessa forma, define-se algumas regras de precificação que diferem das atuais regras da RN nº 63. Considerando que Π_{fi} refere-se ao prêmio a ser cobrado da i-ésima faixa etária, a primeira regra é dada por:

• Regra 1: $\Pi_{f10} \leq \Delta r d_{2003:2017} \times \Pi_{f1}$; em que $\Delta r d_{2003:2017}$ se refere à razão de dependência³ dos idosos entre o ano de 2003 e 2017.

A ideia de precificação da Regra 1 é fazer com que a flexibilidade de precificação seja maior do que a regra imposta pela RN 63, uma vez que a proporção de idosos na população aumenta ao longo do tempo. De acordo com dados do IBGE, em 2003 a razão de dependência dos idosos era de 16,2% e, em 2017 22,6%, representando um aumento de aproximadamente 40%. Na Tabela 1 são mostrados os dados da população brasileira nos anos 2003 e 2017.

Tabela 1: População brasileira por faixa etária (ANS) em números absolutos e proporções para os anos de 2003 e 2017.

Faixa etária	População 2003	Proporção 2003	População 2017	Proporção 2017
0 - 18	65.926.916	$36,\!50\%$	59.865.380	28,83%
19 - 23	17.840.995	$9,\!88\%$	17.058.450	$8,\!21\%$
24 - 28	15.836.723	8,77%	16.997.478	8,19%
29 - 33	14.098.031	$7,\!81\%$	17.405.780	$8,\!38\%$
34 - 38	13.158.660	$7{,}29\%$	17.065.420	$8,\!22\%$
39 - 43	12.081.435	$6{,}69\%$	14.949.462	$7,\!20\%$
44 - 48	10.251.128	$5{,}68\%$	13.314.847	6,41%
59 - 53	8.377.037	4,64%	12.278.602	5,91%
54 - 58	6.543.164	$3{,}62\%$	10.837.522	$5,\!22\%$
59 ou mais	16.505.019	$9{,}14\%$	27.887.988	$13,\!43\%$

Fonte de dados: Instituto Brasileiro de Geografia e Estatística – IBGE.

As próximas regras são

³Razão de dependência é definida como o quociente entre o número de pessoas em idade inativa (neste caso, os idosos) e o número de pessoas em idade ativa (BRITO, 2008). Neste trabalho, considera-se que as pessoas em idade ativa são aquelas que possuem idades entre 18 e 59 anos e, pessoas em idade inativa aquelas com idades entre 0 e 18 anos ou maiores do que 59 anos.

- Regra 2: $\Pi_{f1} \leq \Pi_{f2} = \Pi_{f3} = \ldots = \Pi_{f9} \leq \Pi_{f10}$;
- Regra 3: $\Pi_{fi} = \frac{1}{10} \sum_{i=1}^{10} E[\Pi_{fi}], i \in [1, 10];$
- Regra 4: $\Pi_{fi} = \mu_i$, em que μ_i é o risco da faixa i;
- Regra 5: $\Pi_{fi} = \frac{\text{Fator } 5:1_{fi}}{\text{Fator } 5:1_{f1}}$, $i \in [1, 10]$. Em que o fator 5:1 é uma adaptação⁴ da metodologia de Fontana *et al* (2017) que estabelece que o prêmio a ser cobrado pelo adulto mais velho deverá ser cinco vezes o prêmio do adulto mais jovem.

Para que seja possível uma comparação entre os resultados das diferentes regras criadas, a regra atual da ANS será utilizada como base. Assim, foram criadas duas regras base que estão de acordo com a RN nº 63, são elas

- Regra base ANS (1): $\Pi_{fi} = \frac{\Pi_{fi}}{\Pi_{f1}}$, em que Π_{fi} é o prêmio médio das pessoas que pertencem a carteira de beneficiários estudada e que pertencem à faixa etária i.
- Regra base ANS (2): sequência de dez valores reais igualmente intervalados com valores extremos 1 e 6. Logo, $\Pi_{fi} = \{1; 1, 55; 2, 11; 2, 6; 3, 22; 3, 77; 4, 33; 4, 89; 5, 44; 6\}.$

A relação entre prêmio e faixa etária para cada regra criada pode ser observada através da Figura 1.

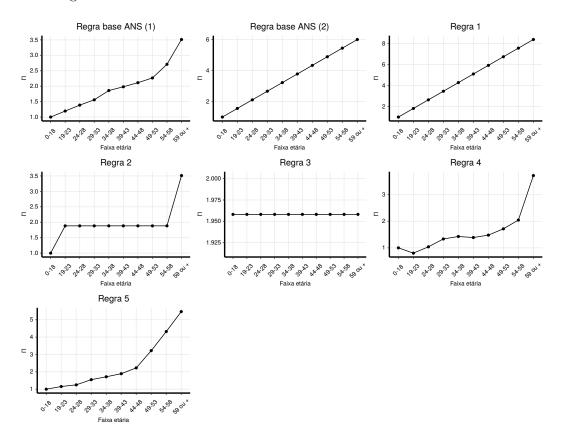
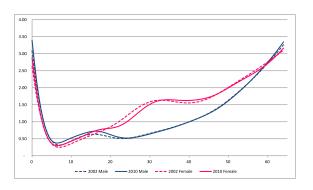


Figura 1: Relação entre prêmio e faixa etária para cada regra criada.

⁴A adaptação se refere a média do fator para as idades pertencentes a cada faixa da ANS.

O cálculo do índice de LC para cada regra é dado pelo algoritmo 1.

Algoritmo 1 Cálculo do índice de LC para cada regra criada.


- 1: Estabelecer uma regra de precificação ou utilizar a regra atual (ANS)
- 2: Entrar com o vetor de prêmios construído pela regra escolhida
- 3: Determinar o valor de λ
- 4: Determinar p de acordo com a proporção das pessoas (Brasil em 2017) que estão em cada faixa etária
- 5: Aplicar a forma geral da equação (3)

3.2 Mensuração do risco individual

Conforme o desenvolvimento matemático das definições de seleção adversa e loss coverage da subseção 3.1, é necessária a mensuração do risco μ . Nesta subseção será proposta duas metodologias para tal mensuração.

3.2.1 Risk ex ante

As funções expostas na seção 3.1 exigem como argumento um parâmetro de risco. Tal parâmetro pode ser mensurado empiricamente (quando se têm dados disponíveis) ou, se assume a premissa de que o risco, em saúde suplementar, possui relação direta com a idade. Na Figura 2 é mostrada a relação entre os custos com saúde e a idade.

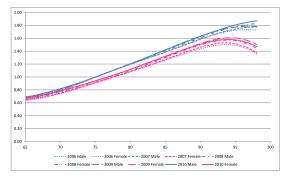


Figura 2: Relação entre idade e custos (população comercial e Medicare) com saúde. Fonte: Yamamoto (2013)

Yamamoto (2013) afirma que os custos com saúde em função da idade, de forma geral, são altos nas primeiras idades e vão diminuindo gradativamente até os cinco anos, independentemente de sexo. Após isso, o que se observa é que os custos voltam a aumentar de forma modesta até os dez anos de idade. A partir desta etapa, os custos voltam a aumentar gradativamente, mas as pessoas do sexo feminino começam a expressar um aumento de custos com saúde mais intenso do que as pessoas do sexo masculino. Em geral,

os custos entre homens e mulheres voltam a ser equivalentes apenas por volta dos sessenta anos de idade e, após isso, as pessoas do sexo masculino tendem a ter custos com saúde mais elevado no restante de suas vidas.

3.2.2 Risk ex post

Nesta subseção é proposta uma medida de risco a partir dos dados observados.

Pessoas-ano

O número de pessoas-ano de 2011 à 2017 é a primeira variável necessária. Com ela será possível o cálculo de exposição, médias etc. O conceito de pessoas-ano é definido por Preston (2001), que aplicado a este estudo é dado pela equação (11).

$$PA_x^k = \frac{\sum_{k=2011}^{2017} t_{x,i}^k}{n} , \qquad (11)$$

em que:

x: idade; $\{x \in \mathbb{N} \mid 0 \le x \le 112\}$;

k: ano de análise, 2011 à 2017;

 $t_{x,i}^k$: é a quantidade de dias em que a i-ésima pessoa com idade x esteve no plano no ano k; n: número de dias do ano k, n = [365, 366];

 PA_x^k : Número de pessoas-ano no ano k e com idade x.

No Gráfico 1 é apresentado o número de expostos em pessoas-ano em relação as idades simples presentes na carteira de beneficiários e também a variação da quantidade de segurados (independente da idade) através do *boxplot* ao longo do período analisado (2011 à 2017).

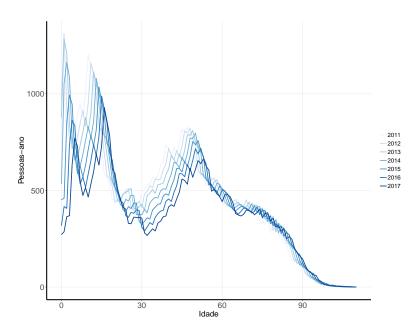


Gráfico 1: Pessoas-ano por idades simples ao longo dos anos.

A análise do Gráfico 1 mostra que a carteira em estudo pode ser caracterizada como uma carteira jovem, uma vez que em todos os anos de análise o número de expostos em pessoas-ano entre as idades 0 e 58 anos foi superior ao número de expostos em pessoas-ano de idade 59 ou mais anos. Ainda assim, a quantidade de pessoas-ano de zero anos em todo o período pode ser um fator que intensifica o risco desta carteira uma vez que a população de 0 à 5 anos enfrenta riscos epidemiológicos tão graves quanto a população idosa, como observado na Figura 2.

Já a análise da dispersão da quantidade de pessoas-ano pode ser observada no Gráfico 2.

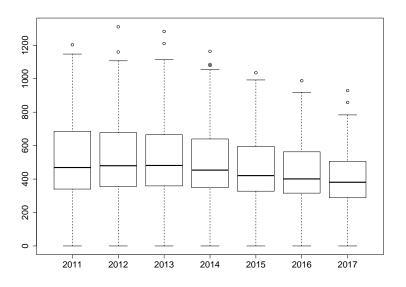


Gráfico 2: Dispersão da quantidade de pessoas-ano por ano de análise.

No Gráfico 2 é mostrada a dispersão ao longo dos anos da medida de exposição pessoas-ano (equação (11)) da carteira. Como o intervalo anual é relativamente pequeno observa-se pouca diferença entre os anos de análise mas, é possível afirmar que tal dispersão tem diminuído ao longo dos anos.

Dado que a população em idade adulta (18–59 anos) é a que representa um menor risco de morbidade, a saída deste grupo de pessoas do plano individual pode revelar indícios de seleção adversa. No Gráfico 3 é mostrada a idade média das pessoas que saíram do plano de saúde ao longo dos anos, exceto em casos de morte.

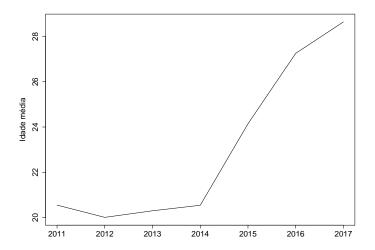


Gráfico 3: Idade média daqueles que saíram do plano exceto pela causa óbito.

As saídas do plano individual sob as condições do Gráfico 3 podem revelar indícios de seleção adversa. Isto porque as pessoas de idade adulta (19–58 anos) são o grupo de risco favorável à seguradora, ou seja, possuem baixa sinistralidade⁵. Além disso, o aumento da idade média observado a partir do ano de 2014 pode estar relacionado ao fato de que o plano de saúde individual não foi mais comercializado a partir desta data.

Ponto crítico

É necessário definir a partir de que ponto um beneficiário representa risco à operadora. Neste caso, o ponto crítico é dado pela média da despesa da carteira no mês m daqueles que tinham idade x no ano k (equação (12)).

$$\overline{C_x^m} = \frac{1}{12} \times \sum_{k=2011}^{2017} \sum_{m=1}^{12} \frac{c_x^m}{PA_x^k} \,, \tag{12}$$

⁵Resultado da razão entre as grandezas de despesa e receita.

em que c_x^m é o custo total da carteira no mês m, do ano k daqueles com idade x no ano k de análise.

Definindo beneficiários que representam risco

Os beneficiários serão analisados mensalmente como mostra a equação (13).

$$R_{i,x}^m = \begin{cases} 1 & \text{(Despesa mensal do i-ésimo beneficiário com idade } x \text{ no mês } m) > \overline{C_x^m} \\ 0 & \text{caso contrário} \end{cases}. \tag{13}$$

Posteriormente, é feita uma soma de $R_{i,x}^m$ para cada i-ésimo beneficiário (equação 14).

$$S_i = \sum_{i=1}^{66.252} R_{i,x}^m \,. \tag{14}$$

Assim, S_i representa a quantidade de vezes em que a despesa mensal do i-ésimo beneficiário foi superior à média mensal da carteira no ano k.

Exposição anual individual

A exposição anual individual é uma outra variável que será suporte para o cálculo do risco individual. A exposição anual individual é dada pela equação (15).

$$E_i = \sum_{k=2011}^{2017} \frac{d_k}{n} \times 12 \quad i \in [1, 66252],$$
 (15)

em que d_k é a quantidade de dias em que o i-ésimo indivíduo esteve exposto no ano k e, n é o número de dias do ano k.

Indicador de risco

O indicador de risco é definido pela quantidade de vezes em que a despesa individual foi maior do que a média da despesa da carteira dividida pelo tempo de exposição do indivíduo (equação (16)).

$$\alpha_i = \frac{S_i}{E_i} \,. \tag{16}$$

Entende-se que uma limitação do risco α é que ele não capta a intensidade do risco individual. Na Figura 3 são mostradas algumas estatísticas descritivas do parâmetro de risco.

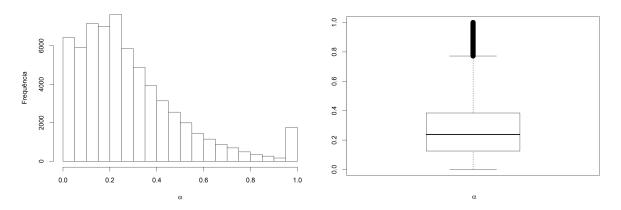


Figura 3: Histograma e boxplot do risco α .

O histograma do risco α representa algo positivo porque com ele é possível afirmar que existem mais beneficiários com baixo risco do que com alto risco. Além disso, o boxplot traz a afirmação que a variação deste risco, que é concentrado por volta de 0,23 tem magnitude relativamente inexpressiva (0,22).

A relação entre o parâmetro de risco criado na seção 3.2.2 e medidas como o tempo de contrato médio, idade média do grupo de risco e custo médio pode clarificar se um determinado grupo de risco teve (ou não) incentivos mais fortes a participar da carteira em análise, estabelecendo assim o fenômeno da seleção adversa, como definido por Winssen et al (2018).

Dessa forma, com os dados da variável risco α , é possível construir uma tabela da população completa dividida em decis de risco. A Tabela 2 traz informações importantes para cada grupo de risco (ou a cada 10% a mais de α), como a proporção da população, o risco médio, o custo médio, a variação do custo em relação ao grupo anterior, a duration (tempo de contrato em anos) média e a idade média.

Tabela 2: Decis do risco α .

Intervalo α	% Pop.	$\overline{\alpha}$	\overline{C}	Δ	Duration	Idade Média
$0 \vdash 0,1$	18,63	0,046	590,08	0,00	9,75	39,7
$0,1 \vdash 0,2$	21,39	0,149	569,62	-20,46	11,47	42,1
$0,2 \vdash 0,3$	20,35	0,247	592,08	22,46	11,35	37,9
$0.3 \vdash 0.4$	13,30	0,347	703,47	111,39	10,31	34,5
$0.4 \vdash 0.5$	8,59	0,446	688,99	-14,48	9,77	32,3
$0.5 \vdash 0.6$	5,18	0,545	959,94	270,95	8,50	31,1
$0.6 \vdash 0.7$	3,06	0,644	$1223,\!55$	$263,\!61$	7,34	29,7
$0.7 \vdash 0.8$	1,78	0,744	1509,94	286,39	6,65	29,2
$0.8 \vdash 0.9$	0,94	0,846	2065,71	555,77	5,53	29,3
0,9 ⊢ 1	2,91	0,990	6021,92	$3956,\!21$	1,88	12,7

Existem informações da Tabela 2 que contradizem os indícios de seleção adversa observados no Gráfico 3. Uma delas é que os beneficiários que possuem maiores tempos de contrato (duration) estão nos menores grupos de risco.

Considerando que pessoas em idades mais avançadas compõem um grupo de risco mais avançado, já que nesta fase da vida a demanda por produtos da saúde suplementar aumenta, a análise da relação entre o risco α e idade também contradiz, neste caso, a hipótese de incidência de seleção adversa.

4 Resultados

A mensuração da taxa de seleção adversa, equacionada por (10), pode ser observada no Gráfico 4. Uma vez que a definição de alto e baixo risco é uma decisão dos gestores da operadora de saúde, são apresentados diferentes cenários (variações nos parâmetros de risco e demanda de mercado – λ).

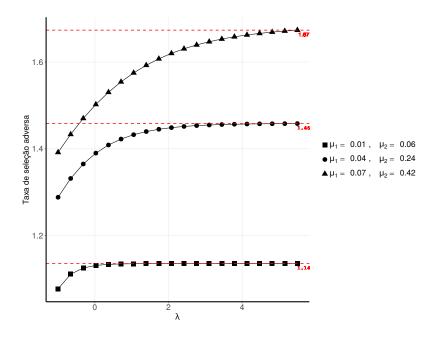


Gráfico 4: Diferentes cenários para a taxa de seleção adversa.

Como a Resolução Normativa nº 63 de 2003 exige que o valor das contraprestações da última faixa etária (teoricamente o grupo de maior risco) deve ser no máximo seis vezes superior ao valor da primeira faixa etária (teoricamente o grupo de menor risco), no Gráfico 4 são mostrados três diferentes cenários em que tal exigência é respeitada. Assim, quanto mais rigorosa for a classificação de risco de usuários ($\mu_1 = 0,01$ e $\mu_2 = 0,06$), mais rápido a carteira de clientes atingirá o ponto máximo de taxa de seleção adversa. Entretanto, este ponto de máximo será menor do que o ponto de máximo para quando a decisão da classificação de risco de usuários for menos rigorosa ($\mu_1 = 0,07$ e $\mu_2 = 0,42$).

A constatação da relação positiva entre as variáveis λ e taxa de seleção adversa, mostrada no Gráfico 4, sugere a análise do comportamento do índice de loss coverage. Utilizando a forma geral da equação (3) foram calculados diferentes índices de LC, utilizando diferentes classes de risco (ex ante e ex post) e diferentes regras de precificação (π). Para estabelecer uma comparação, os resultados de cada regra são ancorados pelo resultado de uma das regras base ANS, como mostra a equação (17).

$$\frac{LC_{Regra_i}}{LC_{Regra_{ANS}}}, \forall i \in [1, 5]. \tag{17}$$

Assim, na Figura 4, todas as curvas estão ancoradas por alguma regra base (ANS), a fim de estabelecer se a aplicação de cada regra ocasionaria um aumento ou diminuição comparado com as atuais regras de precificação da RN nº63 de 2003.

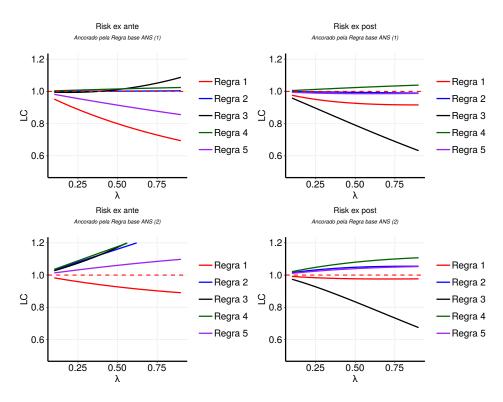


Figura 4: Loss coverage ancorado pelas Regras base ANS, em função de λ para diferentes regras de precificação e parâmetro de risco.

A combinação de cada parâmetro de risco (ex ante ou ex post) com a ancoragem de cada uma das regras base, proporciona diferentes comportamentos do índice de LC em cada regra de precificação. Entretanto, em todas as combinações, a utilização da Regra 1 (referente a variação da razão de dependência) como precificação, provoca em todas elas uma diminuição do índice LC. De todos os resultados presentes na Figura 4, destaca-se o terceiro gráfico pois com exceção da Regra 1, o índice de LC apresenta um aumento significativo em comparação com as regras base da ANS.

Como na literatura⁶ se encontram valores do parâmetro λ entre 0,1 e 1, nas Tabelas 3 e 4 são mostradas as comparações entre os cenários que surgem com as regras estabelecidas e a atual regra base da ANS, em que $\lambda=0,2$ e $\lambda=0,4$.

⁶Tabela 1 do artigo Why insurers are wrong about adverse selection (THOMAS, 2018)

Tabela 3: LC para regras de precificação criadas, ancoradas pela Regra base ANS (1).

λ	Risco	Regra ANS	Regra 1	Regra 2	Regra 3	Regra 4	Regra 5
0,2	$\begin{array}{c} ex\ post\ (\alpha) \\ ex\ ante \end{array}$	1,0000 1,0000	0,9528 0,9007	0,9981 1,0008	0,9233 1,0059	1,0103 1,0059	0,9888 0,9599
0,4	$ex \ post \ (\alpha)$ $ex \ ante$	1,0000 1,0000	0,9257 $0,8182$	0,9959 $1,0019$	0,8430 $1,0263$	$1,0201 \\ 1,0111$	0,9836 0,9224

Tabela 4: LC para regras de precificação criadas, ancoradas pela Regra base ANS (2).

λ	Risco	Regra ANS	Regra 1	Regra 2	Regra 3	Regra 4	Regra 5
0,2	$ex \ post \ (\alpha)$ $ex \ ante$	1,0000 1,0000	0,9841 $0,9635$	1,0308 1,0706	0,9536 $1,076$	$1,0435 \\ 1,076$	1,0213 1,0269
0,4	$ex \ post \ (\alpha)$ $ex \ ante$	1,0000 1,0000	$0,9760 \\ 0,9326$	$1,0501 \\ 1,1421$	0,8889 $1,1699$	$1,0756 \\ 1,1526$	1,0370 1,0515

Nos cenários apresentados nas Tabelas 3 e 4, algumas regras apresentaram um aumento relativamente alto no índice de LC. É necessário dizer que as regras que resultaram em LC superior à regra base da ANS são construídas sob condições criadas apenas para que se alcançasse uma maior acessibilidade e, portanto, não foram levadas em consideração as possíveis implicações contábeis e financeiras que os cenários gerados por tais regras ocasionariam às operadoras de saúde suplementar. Dessa forma, na Tabela 4, no caso em que $\lambda=0,4$ e parâmetro de risco ex ante, as regras 2 e 3 apresentam um aumento de 14,2% e de 16,9% respectivamente. Entretanto, este aumento será acompanhado de um aumento de seleção adversa, cuja magnitude pode ser superior à capacidade que uma operadora de saúde pode suportar financeiramente.

5 Conclusão

Foram construídos alguns indicadores na seção 3 com o objetivo de identificar seleção adversa em uma carteira de planos de saúde individual de uma operadora de saúde e estabelecer uma relação com o conceito de *loss coverage*.

Os resultados obtidos demonstram que o objetivo deste trabalho foi atingido e assim, pode-se afirmar que uma alteração nas regras de precificação de planos de saúde estabelecidas pela ANS poderia aumentar a proporção da população coberta por um plano de saúde individual, de acordo com a definição do índice de LC. Tal afirmação se deve, principalmente, as informações obtidas da Tabelas 3 e 4 e do Gráfico 4 e da Figura 4. Além disso, foi encontrada também seleção adversa na carteira de beneficiários estudada, e a mensuração de sua magnitude pode ser realizada através do conceito de taxa de seleção adversa. Ainda, é sabido que o principal indicador de risco utilizado na metodologia,

risco α , possui algumas limitações, entre elas, a não capitação da intensidade de custo individual.

Sugere-se para trabalhos futuros um tratamento mais específico nos parâmetros da equação de demanda (7), como por exemplo, uma abordagem através da teoria de conjuntos fuzzy. A sugestão se demonstra pertinente pelo fato de que tal equação envolve alguns parâmetros que possam absorver certa subjetividade, como a classificação de alto e baixo risco.

Referências

Agência Nacional de Saúde Suplementar - ANS. Resolução Normativa n°63, publicada em 12/2003. Disponível em: (http://www.ans.gov.br/component/legislacao/?view=legislacao&task=TextoLei&format=raw&id=NzQ4). Acesso em Abril de 2019.

BRITO, F. Transição demográfica e desigualdades sociais no Brasil. **Revista brasileira** de estudos populacionais, v. 25, n. 1, p. 5-26, 2008.

DE ANDRADE, E. N.; ANDRADE, E. O. O SUS e o direito à saúde do brasileiro: leitura de seus princípios, com ênfase na universalidade da cobertura. **Revista Bioética**, v. 18, n. 1, 2010.

DE JONG, P.; FERRIS, S. Adverse selection spirals. ASTIN Bulletin: **The Journal of the IAA**, v. 36, n. 2, p. 589-628, 2006.

FONTANA, J.; MURAWSKI, T.; HILTON, S. Impact of Changing ACA Age Rating Structure: An Analysis of Premiums and Enrollment by Age Band. **Milliman Research Report**, 2017. Disponível em (https:

//us.milliman.com/uploadedFiles/insight/2017/MillimanACAAgeBands_0131_Final.pdf\>. Acesso em Outubro de 2019.

Indice Nacional de Preços ao Consumidor Amplo. Instituto Brasileiro de Geografia e Estatística - IBGE. Disponível em:

(https://www.ibge.gov.br/estatisticas-novoportal/economicas/precos-e-custos/9256-indice-nacional-de-precos-ao-consumidor-amplo.html?=&t=o-que-e). Acesso em Abril de 2019.

HAO, M.; TAPADAR, P.; THOMAS, R. G. Loss coverage in insurance markets: why adverse selection is not always a bad thing. 2015.

MAIA, A. C. Seleção adversa e risco moral no sistema de saúde brasileiro. Dissertação - UFMG/Cedeplar, Belo Horizonte, 2004.

PRESTON, S. H. **Demography:** measuring and modeling population processes. Malden, MA: Blackwell Publishers, c2001. 291 p.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: (https://www.R-project.org/). Acesso em janeiro de 2019.

SIDRA – Sistema de Recuperação Automática. Instituto Brasileiro de Geografia e Estatística. Disponível em: (https://sidra.ibge.gov.br/Tabela/1378). Acesso em Agosto de 2019.

THOMAS, R. G. Why insurers are wrong about adverse selection. Laws, v. 7, n. 2, p. 13, 2018.

THOMAS, R. G. Some novel perspectives on risk classification. **The Geneva Papers** on Risk and Insurance-Issues and Practice, v. 32, n. 1, p. 105-132, 2007.

VAN WINSSEN, K. P. M.; VAN KLEEF, R. C.; VAN DE VEN, W. P. M. M. Can premium differentiation counteract adverse selection in the Dutch supplementary health insurance? A simulation study. **The European Journal of Health Economics**, p. 1-12, 2018.

WEI, A D. Modeling Individual and Small Group Health Insurance. Society of Acuaries – SOA. 2008. Disponível em: (https://www.soa.org/globalassets/assets/files/static-pages/research/arch/2009/arch-2009-iss1-wei.pdf). Acesso em Agosto de 2019.

YAMAMOTO, D. H. Health care costs—from birth to death. **Health Care Cost Institute Report**, v. 1, 2013.