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Researchers have been trying to improve the quality of machine learning
estimators, combining them using several methods for decades. It is clear
that combinations can improve results, but an important issue to be raisen
is how to make it consistently and automate this process, without trying
several possibilities for every single handled problem. In this context, the
technique called Stacking has become more popular since this method is
able to produce intelligent ensembles by itself, reducing considerably human
efforts in the machine learning process. In this work, we present an overview
of research works, which have applied Stacking, as well as new research
possibilities, generating perspectives on this field.
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1 INTRODUCTION
A clear objective in the artificial intelligence area is to enable the re-
duction of time that people spend solving real problems [Sebastiani
2002]. In this context, there are many initiatives in completely differ-
ent applications; e.g., driving cars without human interaction, fraud
detection, image recognition, music and movie recommendation
and so on.

For decades, researchers have been trying to improve the quality
of machine learning estimators, combining them in general frame-
works, commonly called ensembles [Polikar 2006]. However, the
process for creating good ensembles has been taking time andmoney
from researchers and companies, simply because it is considered
complex to mix estimators consistently. Taking time from humans
is against the cited principle of the Artificial Intelligence, and, for
this reason, a new field has emerged, being proposed by Wolpert
[1992]. At first, Wolpert called his method as stacked generalization
and, nowadays, it is also known as stacking. In a general explana-
tion, running some estimators based on supervised learning, and
applying a new layer of machine learning over the previous results,
was the manner Wolpert proposed to transfer the hard work from
humans to machines in order to combine different estimators.

Over the last two decades, machine learning has been faced with
an increasing amount of supervised learning algorithms as well as
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the computing power [Lemke et al. 2015]. When Wolpert created
stacking, the method was little used and spread because of some
limitations. After recent advances, stacking has become more popu-
lar for two main reasons: (i) running more estimators and creating
new learning layers take time, but new technologies have been con-
sidered important to handle it, and, (ii) the diversity generated by
different models can improve the quality of ensembles [Oza and
Tumer 2008; Polikar 2006].

2 STACKED GENERALIZATION
Trying to improve supervised learning processes, ensembles com-
bine some predictions from machine learning algorithms, unifying
them in a single answer. It is common to find ensembles aggregating
outputs from base-estimators, generally using voting system, mean,
median, among other manners [Jurek et al. 2014]. In this way, en-
sembles create outputs based on some estimators’ predictions, often
increasing the quality of the final answer. Generally they are able
to improve accuracy and generalization power, when compared to
the best base-estimator combined. These are some of the most im-
portant objectives of machine learning methods, such as presented
in many works, e.g., King et al. [2015], Anifowose et al. [2015], Hu
and Tsoukalas [2003].
We can classify ensembles as homogeneous and heterogeneous.

Homogeneous ensembles use the same base-estimator method in
order to produce their results, e.g. bagging [Breiman 1996a] and
boosting [Freund and Schapire 1995]. Among other ensemble meth-
ods, Stacking is considered a heterogeneous technique [Gupta and
Thakkar 2014; Sesmero et al. 2015]. Heterogeneous ensembles use
different learning algorithms for producing their final guesses [Ting
and Witten 1997b]. Using more than one approach, heterogeneous
algorithms can explore diversity more frequently if compared to a
homogeneous one [Gupta and Thakkar 2014; Sesmero et al. 2015].
Besides that, stacking can also use Bagging and Boosting in its base-
estimators, getting the advantages that homogeneous ensembles
also provide.
Stacking approach divides the learning process in layers, which

we could perceive that, until now, most of proposals have used a
2-layer algorithm. The first layer, called level-0 in [Wolpert 1992],
contains base-estimators, also known as models, such as linear
regressions, decision trees, neural networks, naïve bayes, support
vector machines, etc. The output of each instantiated model is used
as an input for the next layer that is responsible for learning from
these guesses, which were taken from different methods. In this
way, the second layer, known as level-1, contains a machine learning
method (meta-learner) and its responsibility is to create a smart
ensemble, which learns to combine the outputs from the level-0,
and which guesses should be used, according to the context of
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Fig. 1. A general framework flow for a 2-layer stacking.

each instance. A general flow of stacked generalization is shown in
Figure 1.

2.1 Definitions
The space S , presented in Figure 1, and defined in Equation 1, con-
tains instances for supervised learning algorithms, which are used
at first in the level-0. Wolpert [1992] emphasizes that S contains
the original search space. In this work, we define the number of in-
stances asm and the number of original features as n. Each instance
xi for all i in {1, . . . ,m} is a vector with n features, where each xi
is labelled by a scalar value yi for all i in {1, . . . ,m}. As well as in
Wolpert [1992], we define the learning problem only using a single
output for instance, though it can be extended to support multiple
outputs.

S = ∪mi=1(xi ,yi ) (1)

Consideringm = 9, n = 4 and the problem as a binary classifi-
cation, we present an illustrative example of a level-0 dataset S in
Figure 2.

2.1.1 Level-0. In this work, we define the number of estimators
used in the level-0 as p. Each estimatorMj for all j in {1, . . . ,p} will
createm guesses represented by the vectors ŷj for all j in {1, . . . ,p}.
Creating p guesses for each instance in S , after running different

3.4 2.8 1.0 3.6 1

2.8 2.9 1.2 3.5 0

4.9 1.9 1.0 2.8 1

3.0 3.2 0.9 2.8 0

4.8 2.9 0.8 3.0 0

1.2 2.1 0.9 3.2 1

0.4 1.0 1.1 2.9 0

2.6 2.7 1.3 3.9 1

y

x2

x3

x4

x5

x6

x7

x8

x1

f1 f2 f3 f4

1.9 3.0 1.2 3.1 0x9

Fig. 2. Example of an original space S.
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Fig. 3. Example of an extended space.

instantiated models, the Stacking technique can provide diversity
for taking better guesses in the level-1’s meta-learner. In Figure 3,
we extended the illustrative example from Figure 2, considering
p = 2.

In Figure 3, after running hypothetical two models,M1 andM2,
over the space S , we can see two new columns, ŷ1 and ŷ2, which
represent guesses from M1 and M2 respectively. These artificial
features, ŷ1 and ŷ2, are also known as meta-features.
Once the first phase is done, the p vectors of guesses generated

by base-estimators are used to compose the level-1 dataset (meta-
dataset S’). Each vector ŷj in j = {1, . . . ,p} is a meta-feature in the
new and transformed space S ’, where each one containsm guesses.
In this point, we have two possibilities: either S ’ includes the original
features or not. Section 3.1.3 presents works that use the original
space of features, in which the meta-learner is able to analyses it
context using it. Section 5.5 describes advantages, disadvantages
and research opportunities also related to this specific issue.
In this work, the most common manners that estimators create

thesem outputs for each instantiated model are presented in Sec-
tion 2.1.3. This is a very important part of Stacking in order to avoid
overfitting. A discussion of possibilities to generate these outputs
as current research opportunities are presented in Section 5.4.

2.1.2 Level-1. After constructing a meta-dataset S’, the level-1
meta-learnerM ’ should be generated using any learning algorithm
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[Sesmero et al. 2015]. Level-1 contains at least one meta-learner that
uses, as inputs, the outputs generated by level-0.
It is common to see cross-validation approaches being applied

during level-1 phase in order to identify good parameters to be used
in the meta-learnerM’. If the stacking is formed exactly from two
layers, the final guesses are taken from the meta-learnerM’. Some
works have reported the use of more than two layers and we discuss
them in the Section 3.3.

2.1.3 Generating guesses during level-0. During level-0, in order
to avoid overfitting, the k-fold method and its variations are the
most used techniques employed to generate guesses during level-0.
Splitting the dataset into two folds, one for training and a hold-
out for testing, can also be used at this phase of Stacking. These
strategies are mainly used to obtain out-of-fold predictions that will
be used at the meta-level [Arlot et al. 2010].

K-fold method. The k-fold method has been widely applied by
several authors [Breiman 1996b; Menahem et al. 2009; Ting and
Witten 1997a]. The usage of this method enables the meta-dataset
to have the same number of samples of the level-0 dataset S. During
this step, the algorithm divides the set S into k roughly equal parts
(P1, P2, . . .Pk ). The vector ofm guesses of each estimator i (ŷi ), for
all i in {1, . . . ,p}, is generated using k training processes. Let us
suppose k = 3 and i = 1, then S is divided into three subsets, P1, P2
and P3, in order to generate three out-of-fold predictions. As shown
in Figure 4, the first out-of-fold of ŷ1 is created using a supervised
learning process of the estimator number one using the P2 ∪ P3 as
its training set.
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Fig. 4. First out-of-fold generated by M1 using K-fold.

Using the same parameters and the same algorithm, the second
out-of-fold of ŷ1, is generated, but, this time, using P1 ∪ P3 as its
training set (Figure 5).
In this example, the last out-of-fold needs to be generated using

P1 ∪ P2 as its training set, as shown in Figure 6.
This process is necessary for all p estimators used in the level-0,

generating, at the final, a complete table as shown in Figure 3. It
avoids the inclusion of any output information in meta-features. In
several works related to machine learning, we can see k-fold method
used as a validation process in order to set and choose estimators.
Despite some works have used the term k-fold cross-validation to
define this column generation procedure in stacking, it is not a
validation process. However, some works have also reported the use
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Fig. 5. Second out-of-fold generated by M1 using K-fold.
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Fig. 6. Third out-of-fold generated by M1 using K-fold.

of the cross-validation metric to define if the column will be used
in S’ or not, similar to a feature selection method.

Stratified k-fold. Authors have also used k-fold variations, such as
stratified k-fold. This method has the same main principals of stan-
dard k-fold, but when splitting the data into k roughly equal parts,
each Pi , for i in {1, . . . ,k}, has to keep the same class distribution
proportion as the original dataset S [Gama 1998; Gomes et al. 2012].

Leave-one-out. The leave-one-out method has also been used in
Stacking literature [Ozay and Yarman-Vural 2016; Wolpert 1992]. In
a simplistic explanation, leave-one-out can be seen as a k-fold with
k been the same as the number ofm examples in the dataset S . This
technique used for generating guesses for the meta-level has been
used with less frequency than the previous described in this work.
This fact could be justified because of its high computational cost,
as it generatesm models for each p estimator.

Hold-out strategies. This strategy consists of splitting the dataset
S into two folds, a hold-out and a fold for training. The first fold will
compose themeta-level andwill not be part of base-estimators’ train-
ing. Hold-out strategies are generally employed to large datasets,
in which removing a portion of it, as a hold-out, may not infer in a
huge accuracy loss. Although, a precision degradation is expected
[Sakkis et al. 2001] and, because of this, this method is less used
than others, even though it spends less computing time than k-folds
[Witten et al. 2011].
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3 AN OVERVIEW OF STACKING
Since Wolpert [1992] first introduced stacked generalization for
classification tasks, and Breiman [1996b] successfully applied it to
the regression domain, several different approaches of how to adapt,
extend or apply stacking were already proposed.
In this work, we present an overview of research works, which

have used stacking, separating them into categories, based on our
vision about how to customize the method. The diversity of possi-
bilities to apply stacking exist because there is not a perfect manner
of doing it.

Considering complexity for codifying, Bagging [Breiman 1996a]
and Boosting [Freund and Schapire 1995], which are homogeneous
ensembles methods, are simpler and are yet more widely used than
stacking [Witten et al. 2011]. However, stacking can include bagging
and boosting as base-estimators, besides giving the opportunity to
apply machine learning in more layers. Using layers, stacking is
also categorized as a meta-learning method [Jurek et al. 2014]. In a
meta-learner, inputs are outputs from previous layers, which can
improve the final results considerably [Lemke et al. 2015; Vilalta and
Drissi 2002]. Mixing outputs from different models, meta-learners
have potential to create good estimators, because the ensemble that
combines outputs is generated using a machine learning process,
instead of generating final guesses using average, median, etc. Of
course, for running different algorithms as base-estimators, stacking
requires computer power and the trade-off, between quality and
time, needs to be considered.

3.1 Meta-level dataset construction
Even though there are several methods that can be used to build
the level-1 dataset structure, the type of outputs from the base-
estimators should also be considered. Is this section, we further
detail some different approaches that have already been used since
Wolpert proposed stacking.

Basically, there are two possible outputs from estimators, the
class categorical predictions and the class probabilities distribution.
However, other features can be extracted from base-estimators’ out-
of-fold predictions, in order to compose the level-1 dataset. Such
features can be the entropy of the class probabilities, as used by
Džeroski and Ženko [2004]; Todorovski and Džeroski [2000, 2003];
Ženko et al. [2001], or logarithmic conditional probabilities, proposed
by Bao et al. [1998].

3.1.1 Class categorical predictions. The first approach, developed
by Wolpert [1992], uses crisp outputs from base-estimators. In this
way, the level-1 dataset will only contains discrete predictions as
meta-features along with the correct label vector. Figure 7 presents
a level-1 dataset using the class categorical predictions structure,
considering the outputs of 5 level-0 estimators (i.e., p = 5) and the
correct classification y, for a binary problem.
The usage of categorical predictions allows the measurement of

diversity and collaboration among base-estimators using somemeth-
ods. Such measures directly imply on meta-learner’s accuracy and
are useful to understand the model as well [Fan et al. 1999]. An ex-
ample of measure is the shareability, proposed by Ozay and Yarman-
Vural [2016]. It evaluates the proportion of samples of the dataset
that were correctly predict by, at least, one base-estimator. Other
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Fig. 7. Class categorical predictions along with the correct label.

measurements were applied by Fan et al. [1999] to infer Stacking’s
overall accuracy. They have introduced the conflict-based measure,
which evaluates the proportion of conflicts between base-estimators’
outputs.

Besides the benefits of having ways to measure the meta-learner’s
performance, an issue could arise when using class categorical pre-
dictions. This issue comes up when a particular estimator does not
automatically generate discrete predictions, but probabilities from
0.0 to 1.0. It is related to the selection of a threshold that will define
if a given predicted probability should be used as a 0 or a 1. For
each dataset, the threshold that will best distinguish one class from
another may vary, mainly because of each dataset classes proportion.
In real-world problems, new datasets class proportion are rarely
known, making the threshold specification a complicated task. For
instance, Figure 7 is resultant of Figure 8 applying a threshold of
0.5 in each probability.

3.1.2 Class probabilities distribution. Rather than using crisp
predictions, one can employ the class probabilities distribution ex-
tracted from each base-estimator as meta-features. In this approach,
the level-0 models need to generate a probability prediction for each
instance, which can vary from 0.0 to 1.0. For multi-class datasets,
the level-0 models can generate C probability predictions for each
instance, where C is the number of classes. Figure 8 presents the
level-1 dataset structure using class probabilities distribution, con-
sidering the outputs of 5 level-0 estimators (i.e., p = 5) along with
the correct classification y, for a binary problem.

Using not only discrete predictions from base-estimators, but the
class probabilities distribution, allows the meta-estimator to take
advantage of each level-0 estimator’s confidence, leading to more
accurate predictions on level-1, as reported by Ting and Witten
[1997a, 1999] and confirmed by many authors [Chen et al. 2009;
Džeroski and Ženko 2002; Gama 1998; Menahem et al. 2009; Seewald
2002].

Even having the confidence of each base-estimator, the usage of
class probabilities distribution, as level-1 meta-features, can derive
into huge datasets at level-1 when the data is multi-class. The level-1
dataset may contain (C × p) meta-features. In the other hand, the
previous mentioned approach would generate just p meta-features.
Such huge datasets were found, by Seewald [2002], to be a stacking’s
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Fig. 8. Class probabilities distribution along with the correct label.

weakness. In his experiments, stacking performed worst on multi-
class datasets than binary ones. Menahem et al. [2009] have called it
as curse of dimensionality in their work, also known as the Hughes
effect [Hughes 1968].

3.1.3 Including original features. First employed by Chan and
Stolfo [1993], this approach seeks to include more information to the
level-1 dataset, i.e., the level-0 dataset. This approach suggests that
onlymeta-features obtained from level-0 estimators are not sufficient
to achieve the higher predictive accuracy and generalization by
themselves. So, the meta-estimator can be benefited and improve
results when also uses original features to make predictions.
This level-1 dataset architecture can be seen as an extension of

one of both previous strategies described. It can be built using class
categorical predictions or class probabilities distribution along with
the level-0 dataset. Figure 3 shows this approach when employing
class probabilities distribution along with level-0 features.

Research on the stacking literature also reports that using level-0
dataset along with the meta-features as level-1 data may yield accu-
racy improvement [Ekbal and Saha 2013; Todorovski and Džeroski
2000; Torres-Sospedra et al. 2006; Vilalta and Drissi 2002]. Even that
this approach enables the level-1 estimator to have extra information
to learn on, it has not been widely used and this may due to avoid
the usage of huge datasets when generating the meta-learner. We
discuss more about this approach, considering its advantages and
disadvantages in the Section 5.5.

3.2 Setting stacking up using optimization methods
Even that Wolpert [1992] stated the need of knowledge about the
learning algorithms to be used when configuring stacking, some ap-
proaches employ automatic methods to configure it. These methods
try to select level-0 and level-1 estimators and their parameters. The
search-based stacking approaches are mainly built using heuristic
optimization methods to find good configurations, such as Genetic
Algorithms (GA), Ant Colony Optimization (ACO), Artificial Bee
Colony (ABC) and so on.

A genetic-search approach was proposed by Ledezma et al. [2010]
to be used with stacking, seeking for good configurations, called GA-
Stacking. As the method adapts to the domain characteristics, the
parameters found by it are domain-dependent, making the method

flexible. Besides benefits, GA-Stacking takes more computing time
to run in comparison to standard stacking, as reported by Ledezma
et al. [2002]. Moudrík and Neruda [2015] also claimed that the main
drawback of using genetic-search in a learning context is the time
it consumes.
GA was used by [Ekbal and Saha 2013] to find the most rel-

evant and promising features in their approach. Support Vector
Machines and Conditional Random Field were the framework’s
base-estimators and were fed with the features found by GA. Differ-
ent models using the feature selection scheme were generate in the
first stage of their approach and then, in the second stage, combined
using Stacked Generalization.

Chen et al. [2014] proposed another genetic-search base stacking
approach, also domain-dependent. Their work employed the ACO
meta-heuristic to find stacking good configurations. Experiments
were done fixing C4.5 decision tree as level-1 model and using ACO
to find level-0 configurations. And experiments using ACO to find
both level-0 and level-1 configurations were done as well.

Shunmugapriya and Kanmani [2013] employed ABC heuristic in
their research to find good stacking configurations. They adopted
two different approaches, (i) fixing the level-1 estimator as a J48
decision tree and search for level-0 configurations with ACO and
(ii) using ACO for both level-0 and level-1 estimators.

A comparison of different heuristic-based stacking was done by
Gupta and Thakkar [2014] in order to analyze how to find appropri-
ate level-0 and level-1 configuration. Approaches using evolutionary
algorithms such as GA, ACO and ABC were analyzed, but other
methods can yet be employed and studied to optimize stacking
configurations, including Firefly and Particle Swarm Optimization.

3.3 Using more than 2 layers
The first stacking framework, describe by Wolpert [1992], has two
levels, level-0 and level-1. Some stacking approaches using more
than only two layers have already been induced. Such approaches
seek to relax the lower level estimators’ bias at each level, in order
to achieve better predictive accuracy.

Gama and Brazdil [2000] proposed a scheme called Cascade Gen-
eralization, which works sequentially. In this approach, the class
probabilities distribution generated by each estimator is concate-
nated to the dataset, augmenting it iteratively. They research seeks
to insert more information in the dataset for each model generated.
When applying Cascade Generalization, several layers can be built
using different learning algorithms.

Referred as Troika, Menahem et al. [2009] proposed a new stack-
ing approach, which address multi-class problems in a four-layers
stacking scheme. To begin with, the level-0 classifiers provide class
probability distribution predictions to fill the next level dataset. The
first meta-layer, level-1, is composed of specialist classifiers, which
are trained using one-against-one (OAO) binarization method. This
method is used to avoid the curse of dimensionality. Level-2 is com-
posed ofC classifiers, one for each class of the problem. They receive
out-of-fold predictions of level-1 classifiers as input. These classifiers
are trained using one-against-all (OAA) method. The third, and last,
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meta-layer (level-3) consists in just one classifier that yields out-of-
fold predictions from every level-2 classifier, and then, performs the
final prediction.

4 DIVERSITY AND ITS IMPACTS
Ensemble methods are well-known to produce better overall ac-
curacy when their base-estimators perform well, but are diverse
at the same time [Oza and Tumer 2008]. Diverse estimators make
errors at distinct instances’ predictions, canceling out the combined
outputs’ mistakes [Polikar 2006]. Stacking is an ensemble method
that allows the combination of estimators generated using different
learning algorithms and, in this way, it can explore the diversity
among level-0 base-estimators.
According to [Dietterich 1997], there are four general methods

that can be applied to any learning algorithm for constructing en-
sembles. The first method is to subsample the dataset, in order to
generate multiple outputs, by running the same learning algorithm
several times, varying the subset used for training. Both bagging
[Breiman 1996a] and boosting [Freund and Schapire 1995] are in-
cluded in this method, the first samples the train instances with
replacement, while the second tries to correct predictions of mis-
classified examples at each iteration. Manipulate input features is
the second general method, where it seeks to select a subset of the
data attributes for each algorithm to learn on, in order to the es-
timators learn in distinct ways. The third general technique is to
manipulate the predictions ŷi of each base-estimator. This method
is generally used to solve multi-class problems, by transforming
them into multiple two-class (binary) tasks. Inject randomness into
the learning algorithm is the last general method for constructing
diverse ensembles reported by Dietterich [1997]. It can be achieved
varying the inputs parameters of learning algorithms, e.g., initial
weights for training neural networks [Ghorbani and Owrangh 2001;
Kolen and Pollack 1991].
Besides general methods mentioned above, stacking allows the

use of different learning algorithms to generate level-0 estimators,
in order to obtain diversity. The heterogeneous ensemble technique
[Wolpert 1992] exploit the different biases about level-0, learning
their characteristics when making predictions at the level-1. Many
approaches seeking for achieving diversity using stacking has been
proposed, as we present in the remaining of this section.
Genetic Algorithm (GA) was used to search for good stacking

configurations by Ledezma et al. [2010]. In their work, a GA se-
lected which and how many level-0 estimators should be used, as
well as which level-1 estimator and its parameters. In this domain-
dependent approach, since the framework adapts to the domain in
study, the number of level-0 influenced the overall accuracy. The
authors show that configurations with better overall accuracy were
achieved using 9 to 10 level-0 estimators, where 10was themaximum
possible amount.
Zhu [2010] proposed a hybrid approach to construct ensembles,

integrating data envelopment analysis (DEA) and stacking. DEAwas
employed to perform base-model selection, while stacking had the
combining task. The author claims that the approach success was
achieved possibly due to an improved DEA model on the selection
of diverse base-estimators.

In a domain-specific approach, Chen et al. [2014] proposed a
method for ensemble construction, which employs an Ant Colony
Optimization (ACO) to select stacking estimators. The authors per-
formed experiments with andwithout the introduction of correlative
differences among base-estimators before the ACO starts. The most
promising approach was found to be the one using these correlative
differences, as local information, in order to bring a more diverse
combination of estimators at the base-layer.
Anifowose et al. [2015] proposed an Stacked Generalization ap-

proach composed of Support Vector Machines, where both level-0
and level-1 were SVM estimators. In order to achieve high diversity
among the base-models, generated using the same learning algo-
rithm, a different regularization parameter value was used for each
estimator, as the technique is very sensitive to it.

In order to introduce diversity to stacking base-estimators, Ozay
and Yarman-Vural [2016] generated nearest neighbor estimators
in different feature spaces. Seeking to gain expertise on several
characteristics of instances, different attributes were extracted from
the data. Experiments with one-class expert estimators were done
as well, where each estimator was expert on a specific class of the
problem.

4.1 Applications
Stacked Generalization has been used to solve a wide range of real-
world problems. In this section, we present some examples of these
applications using stacking.
Tzanis et al. [2012] proposed StackTIS, a stacking framework

used in the detection of translation initiation sites (TISs). In order
to predict TIS, an open research problem in bioinformatics, the
authors generated three level-0 estimators. They entitled them as
a coding component, a consensus component, and an upstream
length component. The coding component was induced using SVM
classifier. A 1st order homogeneous Markov chain was used as
consensus component and the upstream length component has the
task of calculate the distance of a potential TIS from the 5’ end of a
cDNA sequence. MLR and M5’ were used at the level-1 to combine
the outputs of the three base-estimators, where M5’ outperformed
MLR. The authors claim that StackTIS performs significantly better
than other TISs detection approaches in the literature, even of their
previous study [Tzanis et al. 2007].

Ness et al. [2009] proposed an improvement to multiple label class
classification for automatic music tag annotation using a framework
with two levels. They employed SMVs at both level-0 and level-1
in their stacking approach. In order to benefit from the confidence
of level-0 estimators at level-1, class probabilities distribution was
chosen for the meta-features structure. In the authors’ experiments,
their proposed method improved the performance of state-of-art
methods in this field in the two evaluated datasets.

Stacking was employed by Sill et al. [2009] in Netflix Prize Compe-
tition, a product recommendation task, achieving the second-place.
As well as in other works [Koren 2009; Töscher et al. 2009], the
authors refer to stacking as a blender. They proposed the Feature-
Weighted Linear Stacking (FWLS) approach, which combines lin-
early meta-features with original features, generating their vectors
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ŷj in j = {1, . . . ,p}. In other words, they create artificial columns
that are not used directly in the space S’.
King et al. [2015] verified the predictive performance of several

ensemble-learning methods for pay-per-click campaign manage-
ment, which includes bagging, voting, meta-cost and stacking. They
seek the combination of classification algorithms, such as naïve
bayes, logistic regressions, decision trees and support vector ma-
chines (SVM). Stacking performed better than they expected, where
they classified as excellent. According to them, in text mining, other
researchers do not know stacking for getting good performances,
then, in our opinion, it can be a research opportunity in this area.
In a petroleum reservoir characterization task, Anifowose et al.

[2015] proposed a Stacked Generalization approach built using
ten different support vector machines as base-estimators in level-0
(p = 10) and another one as the level-1 model. Varying SVM’s in-
put parameters was the manner employed by the authors in order
to achieve diversity among them. In their opinion, the ensemble
proposed by them, showed great potential and outperformed the
other techniques in most of experiments. In order to compare, they
used the following methods: random forest, SVM with the bagging
method, and a standard SVM.
Over the Chinese board game called Go, Moudrík and Neruda

[2015] employed stacking for predicting player’s attributes, specif-
ically to identify proficiency and style. Their non-linear stacking
approach was compared with other methods, which were, mean re-
gression, random forest, partial least squares, bagged neural network
and hand-tuned learner. In order to set stacking up, they used the
genetic algorithm for choosing base-classifiers and the meta-learner.
The genetic search required a large amount of time according to
them and, for this reason, they limited the experiments to contain,
at most, five level-0 base-estimators (p ≤ 5). Compared with other
used methods, the proposed stacking got the better results.

Noçairi et al. [2016] employed stacking in order to combine classi-
fiers in a binary classification problem. Their approach was applied
in the cosmetic industry domain, where the dangerousness of 165
chemicals were predicted. The level-0 base-classifiers used in the
study were partial least squares discriminant analysis, boosting, sup-
port vector machines, naïve bayes and expert scoring. Their stacking
method has performed better than each level-0 base-classifier.
Doumpos and Zopounidis [2007] employed Stacked Generaliza-

tion to combine models in credit risk assessment. Their approach
seeks to distinguish potential defaulters from non-defaulters. The
predictions of seven level-0 models were combined, which were gen-
erated using different methods, such as linear discriminant analysis,
quadratic discriminant analysis, logistic regression, probabilistic
neural networks, nearest neighbors, classification and regression
trees and support vector machines. In order to decide which method
should be used in the level-1, the authors tried the same that were
used in the level-0. Besides that, instead of using directly all outputs
from level-0, they applied the principal component analysis (PCA)
method in order to use this new space of features as input for the
level-1. Using stacking, this transformation was also tested by Merz
[1999].

Stacking was employed by Xing et al. [2016] to predict dropouts
in MOOCs (massive open online courses). In this field, the dataset is
highly imbalanced, since more than 90% of the students tend to drop

out the course, according to the authors. General bayesian network
(GBN) and decision tree C4.5 were used as level-0 classifiers of their
stacking framework. In order to help instructors to provide targeted
support to potential dropouts, predictions were made for each week
of the course. Current week’s data and appended historical data of
previous weeks were used as the training dataset. In their work,
stacked generalization outperformed GBN and C4.5 solving the
problem.

Artificial neural networks (ANNs) were used by Hu and Tsoukalas
[2003] trying to explain consumer behavior, identifying the relative
importance of situational and demographic factors on this task. In
order to create the level-0, 29 ANNs were generated using different
configurations, which concerns in parameters of the algorithm and
input variables. Each level-1 model‘s training set was fed with five
selected base-estimators outputs, generating 24 level-1 models. The
authors did not use all 29 outputs as inputs for the level-1 classifiers,
which were ANNs as well. It is important to emphasize that ANNs
can easily over fit when using many inputs. For this reason, they
tested subsets from level-0 as inputs to the level-1. Selecting base-
estimators, they used the error from a cross-validation method,
using 15 folds, where only the bests were selected. We discuss this
kind of feature selection and its impacts in the Section 5.3.

5 RESEARCH OPPORTUNITIES AND DISCUSSIONS
Although stacking is not a recent method, computational evolution
has provided new research opportunities. In this section, we discuss
some relevant issues, adding our points of view and pointing out
advantages and disadvantages when using stacking.

5.1 About the Level-0
Most of works have used, in our opinion, few estimators in the level-
0. According to preliminary experiments, we strongly believe that,
with the increase of the computing power that has been happening,
researchers should try the usage of hundreds of estimators in this
level in order to improve the quality of their meta-models. By now,
in academic works, authors have reported a small number of base-
estimators (an amount around 7 according to our reading). We also
performed experiments and it was very clear for us that the increase
of type of models, and the variability in their parameters, can help in
twoways: improving the metric that is being used, e.g., AUC, logloss,
rmse, and it is also able to stabilize the results, reducing the standard
deviation of the used metrics. For this reason, we recommend this
attempt in future investigations.

5.2 About the Level-1
In this study, we could notice that few authors have included original
features along with level-0 meta-features to create the meta-dataset.
Most of them focused on simply using predictions probabilities
distribution as level-1 dataset structure, even that this approach
could be benefited from the basic features. The use of basic features
from level-0 along with meta-features can lead the meta-estimator
to more accurate results, according to our preliminary experiments.
This approach allows the level-1 model to make inferences using
the complete data, which includes basic and meta-features.
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Besides the non-usage of basic features at level-1, there is little
effort on stacking more than two layers, since few research explores
this stacking’s possibility. Each stacking’s level seeks to reduce
the previous level error, increasing its accuracy. In this manner,
more levels can lead the framework to more precise results. Using
more than 2 layers, as well as more meta-learners, have not been
extensively study in the stacking research area yet and we believe
it is a good opportunity for scientific investigation.

5.3 Meta-feature selection
Meta-feature selection, or model selection, to build the meta-level
has been a recurrent topic in stacking research. We have presented
works that have used cross-validation approaches and even opti-
mization methods to perform this task. However, such approaches
lead stacking to take more time to execute than its general frame-
work. Selecting and removing weak estimators from level-0 can
implies on loss of performance the meta-learner, as stacking is able
to take advantage even from weak level-0 estimators and not simply
from strong ones [Ozay and Yarman-Vural 2016].
Researchers have been trying to reduce the number of level-0

estimators in order to avoid the curse of dimensionality at level-1.
In contrast, recent machine learning algorithms already aims to
reduce overfitting when learning on huge datasets. In this way, we
strongly believe that we should relax meta-features selection con-
straints and increase meta-learner’s responsibility when generating
predictions. This approach takes advantage of the variety of a lot
of base-estimators been combined. We consider that increase the
responsibility of the meta-learning with more outputs to combine
as a research opportunity.

5.4 About the k-fold generating artificial features
Note that the most common procedure, described in the Section
2.1.3, needs p × k distinct training processes to generate all artificial
features, which will be used by at least one meta-learner in the level-
1. It demonstrates one reason why this technique was not so popular
some years ago. Nowadays, being able to learn faster, using several
CPU and GPU cores, it is easier than last decades. Besides that, there
is the requirement to run the meta-learner in the level-1, which
is another time disadvantage when compared to regular ensemble
methods. However, the additional computing cost can provide better
results. Based on this, stacking has been becoming more popular
since the recent technology advances and, in our opinion, it tends
to be more common.
Even though creating artificial features using this procedure

avoids overfitting, it presents a disadvantage, in our opinion, be-
cause of the usage of different instantiatedmodels for each generated
meta-feature ŷi . As shown in Section 2.1.3, in a 3-fold procedure,
3 models would be generated using different portions of the train-
ing data, and its predictions would be then concatenated into one
new meta-feature. Different instantiated models at level-0 could
insert noise in the artificial feature, affecting level-1’s generalization
process. Generating meta-features with another procedure could
reduce this noise and we consider it is a research opportunity and
can be further investigated.

5.5 Advantages and disadvantages of using stacking
Stacking has shown itself more precise than the best single model
from level-0, outperforming it in most literature research in this field.
Besides that, as this technique can take advantage from the any level-
0 model at level-1. Because of this, model selection procedures can
be reduced, increasing its automation, which is one of Artificial
Intelligence’s main goals.
Even that stacking can perform better than single models, it is

more time consuming. Generate manymodels and stackmany layers
can lead to high overall accuracy, but in exchange, it can take a lot
of time.
Differently from standard combining methods, such as voting,

mean,median and so on, stacking learns to combine its base-estimators.
In this manner, it takes advantage even from weak estimators and
not only from strong ones. Besides that, stacking can increase its
dataset and use original features from level-0 at level-1. In this case,
the method can be benefitted from context analysis, but again, can
takes long to run.

6 CONCLUSIONS
In this work we have presented an overview about the Stacked
Generalization method, considering different architectures and ap-
plications. For considering the potential of this technique and the
amount of open questions, we have also presented arguments in
order to point out why stacking is a fertile field of research, which
provides several opportunities of investigation.
To sum up, nowadays, the process of creating a new decision

maker takes a long time from people, mainly when they are val-
idating their models. Stacking can transfer this hard work from
humans to machines if they use several of different estimators and
parameterizations in the level-0, and a good generalizer in the level-1.
Besides that, once computing power is not a critical problem and the
result tends to improve, the use of the technique becomes more and
more attractive. After making these statements, we ask: Is Stacked
Generalization an inevitable step for the future of supervised learning?
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