

 MINISTÉRIO DA EDUCAÇÃO

Universidade Federal de Alfenas

UNIFAL-MG

Av. Jovino Fernandes Sales, 2.600 - Alfenas - MG CEP 37133-840

http://www.unifal-mg.edu.br

JESPER BØLLING

Development of a Reporting Tool

Alfenas/MG

2020

JESPER BØLLING

Development of a Reporting Tool

Alfenas/MG

2020

Trabalho de conclusão de curso apresentado

como parte dos requisitos para obtenção do

título de bacharel em Ciêncas da Computação

pela Universidade Federal de Alfenas.

Orientador: Flavio Gonzaga

3

A Banca Examinadora, abaixo assinada, aprova

a dissertação apresentada como parte dos

requisitos para a obtenção do título de bacharel

em Ciências da Computação pela Universidade

Federal de Alfenas.

Orientador: Flavio Gonzaga

JESPER BØLLING

Development of a Reporting Tool

Aprovada em: _____/_____/_____

Prof(a). Dr(a). __

Prof(a). Dr(a). __

Prof(a). Dr(a). __

4

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Universidade Federal de Alfenas -

UNIFAL/MG.

Eu agredeco os alunos e os professores do UNIFAL pela ajuda e paciência comigo

durante o meu curso. Um estranheiro tentando caber, numa outra cultura.

Eu agredeco Professor Flavio Gonzaga, pelas dicas e ajuda com o presente trabalho.

Flavio sempre foi positivo, muito competente, e preparado para ajudar na melhor forma

possivel.

5

ABSTRACT

Business intelligence (BI) has been applied in various domains to take better decisions and it

provides different level of information to its stakeholders according to the information

needs. This project aimed at developing a generic report platform consisting of a mobile

application (reporting tool), to be installed on a tablet or smartphone, and a web application

(administration module), that can be run in any internet browser. The report platform can be

used to report the state of assets, and helps shortening the process from information gathering

to decision making based on the gathered information. The mobile application was developed

for Android and iOS using Xamarin (C#), whereas the web application was developed using

Angular. Everything is backed up by a COSMOS database and the communication between

web application/database and mobile application/database was being placed in a separate API

layer backup up by CORE 2.1. The mobile application makes it possible to gather information

about assets in the business and generate reports that can be sent to stakeholders. The

information gathering process includes evaluating assets, taking photos of assets on the spot

and send it all in one package to a central server with the administration module installed. The

administration module is where the uploaded reports can be visualized and furthermore PDF-

reports can be printed out for later use. In this project different components were explored in

Xamarin.Forms, architectural differences in database design and finally, all was put it together

in a solution that is implementable in almost every company with assets. The above project was

developed using a world leading Tanker company as a use case. After finished developing the

solution was integrated, and is being used by the companys engineers in inspecting Tankers

around the world.

Keywords: Business intelligence, Assets reporting, reporting tool.

6

LISTA DE ILUSTRAÇÕES

Figure 1 - Typical Business intelligence architecture .. 11

Figure 2 - Login window ... 14

Figure 3 - Configuration - Vessels overview ... 15

Figure 4 - Add/Edit vessel ... 15

Figure 5 - Delete vessel .. 16

Figure 6 - Assets overview ... 16

Figure 7 - New main group creation .. 17

Figure 8 - New main group added ... 17

Figure 9 - Publish template confirmation .. 18

Figure 10 - Reports list... 18

Figure 11 - Reporting tool - Asset groups.. 19

Figure 12 - Reporting tool - Asset subgroups .. 20

Figure 13 - Reporting tool – Assets ... 20

Figure 14 - Reporting tool - asset overview ... 21

Figure 15 - Reporting tool – images overview .. 22

Figure 16 - Reporting tool - image edit .. 22

Figure 17 - Reporting tools - report details .. 23

Figure 18 - Reporting tool - upload report ... 23

Figure 19 - Client portal - report objects overview .. 24

Figure 20 - Client Portal – vessel overview ... 25

Figure 21 - Client portal – evaluated asset list ... 26

Figure 22 - Client portal - image modal ... 27

Figure 23 - Client portal - vessel report on page .. 27

Figure 24 - Client portal - pdf report .. 30

Figure 25 - Overall structure of project ... 30

Figure 26 - ADFS Process ... 31

Figure 27 - Securing web API with AFDS .. 32

Figure 28 - Report Data model .. 33

Figure 29 - Cosmos Database Layout .. 34

Figure 30 - Xamarin structure .. 36

7

Figure 31 - Project dependency diagram ... 36

Figure 32 - Reports in production .. 40

Figure 33 - Report details in Production DB ... 41

8

TABLE OF CONTENTS

1. INTRODUCTION .. 9

1.1 PROBLEM CHARACTERIZATION ... 9

2. LITERATURE REVIEW ... 11

3. OBJECTIVES ... 13

3.1 GENERAL ... 13

3.2 SPECIFIC... 13

4. DEVELOPMENT ... 14

4.1 ADMINISTRATION PORTAL .. 14

4.2 REPORTING TOOL.. 18

4.3 CLIENT PORTAL ... 24

4.4 GENERAL STRUCTURE OF THE PROJECT .. 30

4.4.1.Security ... 31

4.4.2 Choice of database ... 33

4.5 DEVELOPMENT OF THE REPORTING TOOL .. 35

4.5.1 Structure ... 36

4.8 DEVELOPMENT OF THE CLIENT/ADMINISTRATION PORTAL 37

4.7 DEVELOPMENT OF A BACK-END API ... 38

5. RESULTS ... 40

9

1. INTRODUCTION

In a world being digital, companies in general are replacing pen and paper with

computers / tablets etc. What is common for them all is, that they all have the need for actionable

insights to improve their business. The more information companies have about their business

and the better and faster they are to process the data afterwards, the better the companies will

be able to optimize their profit.

“As the saying goes, “knowledge is power.” To derive valuable knowledge from your

company’s operating data requires the development of an effective business intelligence (BI)

program. Simply put, BI is a technology-driven process for analyzing data and presenting

actionable information to help corporate executives, managers and others make more informed

decisions. For example, if you’re clear about which customers spend the most money and what

they buy, you can develop marketing campaigns and promotions focused on selling to these

high-value customers.” (Maxwell, Locke & Ritter, 2017)

Locating, gathering, analyzing and reporting data and continuously monitoring are key

points in order to archive an effective business intelligence.

Information about its own business is one of the keys on the road to optimized profit, and

knowhow in order to streamline their processes about how to obtain, store and process

information.

1.1 PROBLEM CHARACTERIZATION

A lot of business today are in a large extend dependent on the collection of information

by the use of printed forms.

In business such as Car rental companies, Airline industries, freight industries, real

estates, where the core business is based on the how the ongoing maintenance of the business

assets, it is of outmost importance that the business administration has information about the

whereabouts and the condition of each asset in the company.

In many businesses the process of eventual maintenance includes, filling out a printed

form; inspect the asset on site; send the form somewhere; receive the form; process the

information on the form; determine the condition of the asset.

10

A great deal of business today is, as of today still using plain pen and paper in this

process.

This can result delay in the time the information is being received by central

administration. There is a risk of loosing filled out paper forms, resulting in a new report

request. Finally data loss, spelling errors, when copying paper reports to other types of data

forms.

The processes for the above items are crucial for every business, as it has a direct impact

on the profit if one fails. The faster and more precisely the above process can be executed, the

faster and better maintenance can be carried out.

11

2. LITERATURE REVIEW

“Business Intelligence (BI) software is a collection of decision support technologies for

the enterprise aimed at enabling knowledge workers such as executives, managers, and analysts

to make better and faster decisions.” (Chaudhuri, et al., 2011).

Acording to the article there is a rapid growth in number of products and services offered

worldwide and the adoption of these in different industries, which justifies an increasingly need

for supporting BI tasks near real time, which make business decisions based on the operational

data itself possible.

Figure 1 - Typical Business intelligence architecture

Source: https://cacm.acm.org/magazines/2011/8/114953-an-overview-of-business-intelligence-

technology/fulltext

The article focuses on the technologies in the shaded boxes in Figure 1 - Typical

Business intelligence architecture.

Data movement and how data is being stored has a big impact on the final solution. “The

difference in execution time between a good and bad plan for such complex queries can be

several orders of magnitudes (for example, days instead of minutes).“ (Chaudhuri, et al., 2011).

The goal here is to reduce the latency between when the operational data is acquired

from the sources and then when analysis over that data is possible which can be tanslated to

“reduce time between data collection and the data processing before being presented”, which

will be the focus of this work. The data collection and the data presentation are the extremities

in Figure 1 - Typical Business intelligence architecture

https://cacm.acm.org/magazines/2011/8/114953-an-overview-of-business-intelligence-technology/fulltext
https://cacm.acm.org/magazines/2011/8/114953-an-overview-of-business-intelligence-technology/fulltext

12

A specific Asset management system has been proposed in (COPRPORATION, 2018)

where an overall architectural plan has been provided for an asset management system. Despite

being in different contexts, the work , presents similarities to the proposed solution. The main

difference is, that in the work above, the inspection is to be made in buildings and constructions

that have a fixed location and in the proposed solution the inspection is to be made in moving

vessels all over the world.

A specific documentation in order to store, process and present the data afterwards, was

not encountered. The expected outcome is very similar though:

“A system and method are disclosed herein that provides a property management

system for an owner of a property to be able to electronically communicate via a single system

with a building management company, inspection company, service company or other user on

the system.”, which can contribute to achieve the main objectives in this work.

A lot of asset management software tools are to be found on the market, though it is

common for many of the tools, to be able to keep track of type, price, buy date, location in

company etc.

Or in other words “inventory tracking”. The inventory tracking itself is only part of what

this work is proposing as it is also needed to be able to track the state of the single inventory

item and be able to document it with photos.

A specific software tool that has the following abilities has not been found client, server

application with possibility to work on the report “on site”; rating the state of assets and

supplying photos along with asset remarks.

13

3. OBJECTIVES

3.1 GENERAL

The main objective is to develop a generic reporting tool/administration platform, to be

able to conduct on site reporting on a mobile device (tablet/smart phone), aligned with the report

templates made using the administration platform..

3.2 SPECIFIC

The specific objectives are:

- Develop an administration module where it is possible to verify user with Azure active

directory, insert, change and delete items in the report template, visualize uploaded reports for

every report object, visualize different versions of reports for different report objects, download

a report in PDF-format;

- Develop a mobile application (reporting tool) to be used on iOS/Android tablets/smart

phones. The reporting tool shall be able to verify user with Azure active directory, download

latest report template, browse through report groups/items, update report item with: Rating,

Remark, Images, upload the finished report to a central server;

- Develop a back-end API that is accessible by both the mobile application and the

administration platform and stores the all reports in location, independent of different templates.

14

4. DEVELOPMENT

System functionality overview

In this chapter the details about the developed project is being presented. The

development was divided in three parts being the Administration portal, Reporting tool and

Client Portal.

Details about the database to hold information and data subject to the above-mentioned

solutions is being presented at the end of this chapter.

4.1 ADMINISTRATION PORTAL

The administration portal is where the report template is being configurated. And

thereby the base for all the reports. The portal is accessible using a internet browser.

In order to configure the report template, a login with valid credentials is needed. The

login is being validated against the company’s Azure Active directory as shown on Figure 2 -

Login window.

Figure 2 - Login window

Source: Own application

15

When logged in the user will encounter the configuration section.

It is here possible to configure the objects to be able to make reports over, which in this

case are Vessels as shown in Figure 3 - Configuration - Vessels overview.

Figure 3 - Configuration - Vessels overview

Source: Own application

It is possible to add, edit and delete vessels as shown in Figure 4 - Add/Edit vessel and

Figure 5 - Delete vessel.

Figure 4 - Add/Edit vessel

Source: Own application

16

Figure 5 - Delete vessel

Source: Own application

When a vessel is being added, changed or deleted, a single document is being changed

in the Vessels collection in the connected Cosmos database.

The next tab on the left is the assets configuration. This is where all the groups,

subgroups and assets are created in the order that it will be presented in the reporting tool.

By pressing the button “Add new Group”, a new main group can be created as shown

on Figure 7 - New main group creation. After the new main group appears in the overview as

shown on Figure 8 - New main group added.

Figure 6 - Assets overview

Source: Own application

17

Figure 7 - New main group creation

Source: Own application

Figure 8 - New main group added

Source: Own application

Clicking the button with the “plus” sign, in the view will add a subgroup or a subitem

to the corresponding group/line clicked on.

When the configuration is finished, the “Publish template” button must be pressed in order to

save the changes to the database.

When the “Publish template” is pressed, a confirmation dialog as shown on Figure 9 -

Publish template confirmation appears. Changes will be written to the Cosmos database in the

template collection, updating the report template, that will be downloaded by the Reporting

tool, whenever the Reporting tool synchronizes.

18

Figure 9 - Publish template confirmation

Source: Own application

4.2 REPORTING TOOL

The reporting tool can run on either iOS v9.00+ or Android v8.00+. The functions on

the 2 platforms are the same. The only thing that differs is the shape of buttons, message boxes,

etc. The first time the reporting tool starts up the user will be prompted to sign in with user

credentials as shown on Figure 2 - Login window. The credentials are being verified against the

Azure Active Directory belonging to the company. After successful verification, the user will

be presented with the Reports List. Ongoing reports and already uploaded reports will be shown

in the list as shown on Figure 10 - Reports list.

Figure 10 - Reports list

Source: Own application

19

The first time the user logs on, the Reporting Tool automatically downloads the

published report template shown on Figure 6 - Assets overview. This report template will be

used to generate new reports. If a new report template is downloaded, it will only be used as a

base for new reports. The reports started before updating the report template remains

unchanged.

When creating or selecting an existing report entry, the main asset groups are being

shown with sub groups statistics as shown on Figure 11 - Reporting tool - Asset groups.

Navigating through subgroups on Figure 12 - Reporting tool - Asset subgroups, and

selecting an asset on Figure 13 - Reporting tool – Assets will lead to the asset overview as shown

on Figure 14 - Reporting tool - asset overview

Figure 11 - Reporting tool - Asset groups

Source: Own application

20

Figure 12 - Reporting tool - Asset subgroups

Source: Own application

Figure 13 - Reporting tool – Assets

Source: Own application

21

Figure 14 - Reporting tool - asset overview

Source: Own application

On the Ratings/Remarks tab on the assets overview, it is possible to give a rating

between 0 and 5, and a remark for the given report item. The rating given to the report item

here, is being used to calculate the average for the given asset subgroup, asset group and report.

The calculated averages can be seen in each overview.

Selecting the Images tab on assets overview, shows the associated images to the report

item as shown on Figure 15 - Reporting tool – images overview. New images can be inserted

either by inserting them from the camera roll on the device, or by taking the image directly

through the app. An attached image can be manipulated by clicking on the image in the

overview.

22

Figure 15 - Reporting tool – images overview

Source: Own application

Figure 16 - Reporting tool - image edit

Source: Own application

23

When manipulating an image as shown on Figure 16 - Reporting tool - image edit, text,

figures and manual drawings can be added to the image. The image can be cropped and rotated

as well before saving the image and returning to the image overview.

Before uploading the report, the user must fill out the report overview as shown on Figure 17

- Reporting tools - report details.

After the report has been uploaded as shown on Figure 18 - Reporting tool - upload

report, the state of the report on the local device will not be editable anymore. It can be unlocked

and uploaded again. By doing that, the report in the Client Portal will be overwritten with the

modified report.

Figure 17 - Reporting tools - report details

Source: Own application

Figure 18 - Reporting tool - upload report

Source: Own application

24

4.3 CLIENT PORTAL

The client is where the reports uploaded from the “Reporting Tool”, can be accessed.

The portal is accessible using a web browser.

The portal is secured in the same way as the Administration portal, so when entering the

portal, the user will be asked to login as shown on Figure 2 - Login window.

After a successful login the user will have an overview of all the report objects as shown

on Figure 19 - Client portal - report objects overview. In this case “Vessels”.

Here it is possible to review the latest report for each vessel. That can either be shown

on the page by clicking “Load in sidebar”, or downloaded as a pdf file.

Figure 19 - Client portal - report objects overview

Source: Own application

25

Figure 20 - Client Portal – vessel overview

Source: Own application

Figure 20 - Client Portal – vessel overview shows an overview on the vessel. There are

labels with different colors on the vessel indicating what groups have a rating or not. Asset

groups that have ratings are having a green label active and can clicked.

Clicking the label will result in a list with assets that have been evaluated in the

particular group as shown on Figure 21 - Client portal – evaluated asset list.

26

Figure 21 - Client portal – evaluated asset list

Source: Own application

Each evaluated asset is listed with name, code, grade and any remarks that may have

been added. If there are any images associated with the asset, a button will appear on the end

of the line. Clicking the button will show the associated image(s) in a modal as shown on Figure

22 - Client portal - image modal.

27

Figure 22 - Client portal - image modal

Source: Own application

Figure 23 - Client portal - vessel report on page

Source: Own application

28

Figure 23 - Client portal - vessel report on page is the core of the whole application.

The main asset groups are listed with their respective name, and calculated average.

Furthermore, amount of evaluated assets and total assets in each group are listed. The average

grade is based solely on the report items that have been evaluated.

The classification of each group can be read in the Score-table and is based on the

average score for each group. Based on that, and the age of the ship, the color code table tells

the condition of the given area, and if service is needed.

It is possible to save the report as a pdf as well. A such is shown on Figure 24 - Client portal -

pdf report.

29

30

Figure 24 - Client portal - pdf report

Source: Own application

4.4 GENERAL STRUCTURE OF THE PROJECT

Database

Reporting tool

Administation
portal

Client portal

Figure 25 - Overall structure of project

Source: Own application

31

The project is structured as shown above on Figure 25 - Overall structure of project.

The Database is where all the information is being stored. That is: Report Templates,

report objects and filled out reports for every report object.

The Database is only being accessed by the back-end API. The back-end API is

responsible for the communication to/from the Reporting tool, Client portal, administration

portal and the Database.

4.4.1.Security

In order not to expose the data in the Database, access to the back-end API is being

secured by a security layer based on an Active Directory (Error! Reference source not

found.), OAuth and a provider using Active Directory Federation Services (Error! Reference

source not found.).

 The RootViewController provides the content view of the window.

Error! Reference source not found. works as a proxy service between the Error!

Reference source not found. and the application where authentication is needed. Through

Error! Reference source not found., the application is granted a federated trust, so the users

can log into the application through Error! Reference source not found..

32

Figure 26 - ADFS Process

Source: Own application

The process for authentication shown on Figure 26 - ADFS Process is as follows:

• The SPA (Wikipedia, 2019) or Mobile device is being accessed by the

user and client ID, domain and redirect URL is sent to the ADFS

• The received client ID is being used to authenticate the user through SSO

against the AD using the domain.

• The user successfully authenticates on AD, and it is verified if the user

has access to the application and if given redirect URL is registered

within the application.

• The user is now being forwarded to the redirect URL together with an

authentication claim (token), which either grants or denies access based

on the Federated Trust service created.

Figure 27 - Securing web API with AFDS

Source: Own application

Figure 27 is showing how the Web API is being secured by the AFDS process.

When the user accesses the webpage / app and already has a token, the request is being

forwarded to the Web API.

If the user does not have a token, the AFDS process will commence.

33

4.4.2 Choice of database

Choosing the right database is very crucial for the performance in the solution. With a

lot of different database structures to choose from, tests are being carried out, in order to find

the best performing database.

A normalized model (3rd normal form) in a relational database would look as on Figure

28 - Report Data model. A report can have various Asset groups, and each asset groups can

either have asset groups or report assets.

In this case we will need a report template that can change. And when the template is

being changed, the data in old instances of reports should not change. Ex. A building has a

report with 1 door as an entrance. A year after, the door has been changed to a double door,

but the rest is the same.

In the first report the name should be “Entrance door”, and the second report “Entrance,

double door”.

To do this in a relational database, it would be required to keep track of all the changes

in the model names and instances, and store this in the database as well. To benefit the most

from a relational database, it requires that all the data must follow the same structure and be

stored in a very organized fashion, which makes working with our dynamic report templates a

bit more complicated.

A none relational database on the other hand is based on a collection of documents,

where every document consists of only two columns ('key' and 'value'), with more complex

information sometimes stored as BLOBs within the 'value' columns. The data in each document

is stored as JSON, and values are nested hierarchically. That means that a whole report can be

stored in a document and it is not required to keep track of when names for the asset’s changes.

34

Figure 28 - Report Data model

Source: Own application

Based upon these facts a non-relational database is chosen for the project. In this case

Microsoft Azure Cosmos DB is being used.

4.4.2.1.Project data model and tests

AssetControl

Ratings Reports ReportTemplates Vessels

Cosmos Document Database

Documents

Figure 29 - Cosmos Database Layout

Source: Own application

Figure 29 - Cosmos Database Layout shows the database layout where the database

“AssetsControl” has several containers underneath for storing data.

The “Vessels” container is where the report objects are stored. In this case it consists of

documents with detailed information about each vessel.

35

The “ReportTemplates” container contains a document with the enabled report

´template edited in the administration portal. The reporting tool downloads the template from

this container.

The “Reports” container contains all the uploaded reports.

The “Ratings” contains descriptions of the rating for the ships. Different ship types can

have different ratings.

A report document withholds all information about the report. Images that are uploaded

along with the report are stored in Azure Blob storage and a reference to the image is kept

within the report document.

4.4.2.2 Limitations within Cosmos Database and the use of it

It is important to bear in mind that each document in a Cosmos Database container has

a maximum size of 2 MB. In our use case, there are about 420 assets, that can be evaluated. The

empty report template for these 420 assets gives a file size of 210 KB. With 10 images for each

report Asset and a random text of 3219 characters in as a remark gives a total size of 2,05 MB.

It is most unlikely that in most cases these limits will not be exceeded. In the case that

the limit will be exceeded the solution will be to change the data structure a bit, so a single

report will be contained in several documents.

4.5 DEVELOPMENT OF THE REPORTING TOOL

Development of the reporting tool was done in Xamarin.Forms (Using Visual Studio

2017), which consist of various elements that allows development of applications for iOS and

Android sharing the same Code-Base.

• C#- Language – Allows features like Generics, LINQ and the Task Parallel Library and

syntax is similar to C# elsewhere.

• Mono .NET framework – Provides a cross-platform implementation of the extensive

features in Microsoft’s .NET framework.

• Compiler – Depending on the platform, produces a native app (e.g. iOS) or an

integrated .NET application and runtime (e.g. Android). The compiler also performs

36

many optimizations for mobile deployment such as linking away un-used code and

libraries depending on the platform compiled to.

• IDE tools – The Visual Studio on Mac and Windows allows you to create, build, and

deploy Xamarin projects.

Figure 30 - Xamarin structure

Source: https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin

Using Xamarin one uses a single programming language and runtime that works on

three mobile platforms. The C# code base will have access to all features that are available for

native SDK’s. Interfaces can be designed individually for each platform as seen on Figure 30

- Xamarin structure.

4.5.1 Structure

https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin

37

Figure 31 - Project dependency diagram

Source: Own application

The ReportingTool platform was projected to work only on Android and iOS why the

structure is as shown on Figure 31 - Project dependency diagram.

“ReportingTool” is a .NET standard 2.0 library and is the Core Library in the project.

This is where the business layer, service access layer and data access layer go. At compile time

this will either be compiled to run on iOS or on Android. This project is dependent on

ReportingTool.Models where all the data models are stored.

The ReportingTool.Android and ReportingTool.iOS is where specific code for Android

or iOS goes, where necessary. That can for example be a navigation page

A navigation page in Xamarin Forms, is at compile time being compiled into a

ViewController in iOS and into an Activity in Android. If there are any device specific

customizations it must be handled in the specific target project, since the code to any

customization is different.

4.5.1.1 Compiling to Android Devices

Code of C# is compiled to intermediate language with a package of MonoVM + JIT. If

there are any unused classes of framework then it is stripped out when linking. The application

runs, interact with the java native types through JNI (Java Native Invoke).

38

4.5.1.2 Compiling to iOS devices

C# source code is compiled using Xamarin.iOS. The Mono framework allows access to

iOS platform specific features. The Xamarin.iOS compiler compiles source code into an

intermediate language that is known as ECMA CIL (common intermediate language).

 After compilation of Xamarin.iOS application code into CIL there is needs to compile

it again into native machine code that can run on an iOS device.

4.8 DEVELOPMENT OF THE CLIENT/ADMINISTRATION PORTAL

Development of the client and administration portal was carried using Angular CLI and

Typescript. There is no specific reason for choosing Angular other than trying something new.

4.7 DEVELOPMENT OF A BACK-END API

The Reporting tool mentioned in

4.5 DEVELOPMENT OF THE REPORTING TOOL and the client/administration

portal mentioned in 4.8 DEVELOPMENT OF THE CLIENT/ADMINISTRATION PORTAL

are all communicating with a back-end API in order to deliver/retrieve data from the database.

The backend API was developed as a REST-API, based on Microsoft .NET Core 2.1. All

methods are secured as described in the

4.4.1.Security section. A big advantage of making a separate REST-API is that front end

and back end is separated, which makes it very easy to construct a new front-end platform and

after just “connect” it to the backend. Other advantages to this approach:

• Authentication

39

o If a client needs to access data from multiple devices, it only must be

authenticated once at the gateway. This reduces latency and ensures

authentication process are consistent across the application e.g. ReportingTool

and portals.

• Input Validation

o The API itself can perform simple logic as well. The API can ensure that the

request contains all the necessary information in order to complete the request

before it reaches the services behind.

• Metrics collection

o When all the requests are funneled through the API, it is the ideal place to collect

analytics information such as:

• Where the user is connection from

• How many times a day a user is connecting

• What service behind is being called the most

• Response Transformation

o When having different devices and users needing different information, the API

can be used to effectively present a unique API to each client type. For example,

does it make sense to differentiate calls from the ReportingTool and the Portals

since they usually are called from either mobile device or desktop devices.

40

5. RESULTS

This project with the Vessels use case is being tested live by the client. As being the

world’s leading product tanker company carrying cargoes such as naphtha, gasoline and jet oil,

this is not a process that is easily done.

Each inspection engineer has been equipped with a device with the reporting tool

installed on, which provides data to the database. Inspecting the data as shown in the Cosmos

Database, it is possible to see that the amount of data is increasing as seen on

Figure 32 - Reports in production.

Figure 32 - Reports in production

Source: Own application

41

Each line in the ‘Items’ column is a report and has all the information related to the

report, which can be seen on Figure 33 - Report details in Production DB.

Figure 33 - Report details in Production DB

Source: Own application

This is the result of the reporting tool idea implemented for use in the shipping business.

With minor adjustments it can be implemented in any business to do the reporting of any object.

42

REFERENCES

Chaudhuri Surajit , Narasayya Vivek and Dayal Meshwar An Overview of Business

Intelligence Technology [Online] // Communications ACM. - Communications of the ACM,

2011. - 12 13, 2019. - https://cacm.acm.org/magazines/2011/8/114953-an-overview-of-

business-intelligence-technology/fulltext.

COPRPORATION BUILDING INFORMATION MANAGEMENT SYSTEMS

PROPERTY MANAGEMENT SYSTEM AND METHOD THEREOF [Patent]. - NY, USA,

09 20, 2018.

Hansen Michael S. [Online] // blogs.msdn.microsoft.com. - march 25, 2018. - 04 02, 2019. -

https://blogs.msdn.microsoft.com/mihansen/2018/03/25/azure-active-directory-

authentication-easy-auth-with-custom-backend-web-api/.

Maxwell, Locke & Ritter USE BUSINESS INTELLIGENCE TO MAKE PROFITABLE

DECISIONS [Online]. - Maxwell Locke & Ritter, 11 02, 2017. - 12 13, 2019. -

https://www.mlrpc.com/articles/use-business-intelligence-make-profitable-decisions/.

Microsoft Active Directory Domain Services Overview [Online]. - 05 30, 2017. - 12 13,

2019. - https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-

dc/active-directory-domain-services-overview.

Microsoft Active Directory Federation Services [Online] // Microsoft Docs. - Microsoft, 05

30, 2017. - 12 13, 2019. - https://docs.microsoft.com/en-us/windows-server/identity/active-

directory-federation-services.

Microsoft Integrated Windows Authentication [Online]. - 12 17, 2012. - 12 13, 2019. -

https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/integrated-windows-

authentication.

43

GLOSSARY

AD

Active Directory (AD) is a directory service developed by Microsoft for Windows

domain networks. It is included in most Windows Server operating systems as a set

of processes and services. Initially, Active Directory was only in charge of centralized domain

management. Starting with Windows Server 2008, however, Active Directory became an

umbrella title for a broad range of directory-based identity-related services.

ADFS

Active Directory Federation Services (ADFS) is a Single-sign on (Error! Reference

source not found.) solution created by Microsoft. As a component of Windows Server

operating systems, it provides users with authenticated access to applications that are not

capable of using Integrated Windows Authentication (IWA) (Microsoft, 2012) through Active

Directory (AD) (Microsoft, 2017).

ADFS gives organizations the ability to control their employees’ accounts while

simplifying the user experience: employees only need to remember a single set of credentials

to access multiple applications through Error! Reference source not found..

Android Activity

The Activity class takes care of creating a window where in which the UI can be placed.

Activities are often being presented as full screen windows, but can also be presented as floating

windows / embedded windows etc.

Azure Blob Storage

Azure Blob Storage is a service for storing large amounts of unstructured object data,

such as text or binary data. You can use Blob Storage to expose data publicly to the world, or

to store application data privately. Common uses of Blob Storage include:

1. Serving images or documents directly to a browser

2. Storing files for distributed access

3. Streaming video and audio

4. Storing data for backup and restore, disaster recovery, and archiving

5. Storing data for analysis by an on-premises or Azure-hosted service

https://en.wikipedia.org/wiki/Directory_service
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Windows_domain
https://en.wikipedia.org/wiki/Windows_domain
https://en.wikipedia.org/wiki/Windows_Server
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Windows_service
https://en.wikipedia.org/wiki/Windows_Server_2008
https://www.okta.com/products/single-sign-on/
https://azure.microsoft.com/en-us/services/storage/blobs/

44

Dependency Injection

Dependency injection is a design pattern that helps developing loosely coupled code.

The purpose of developing loosely coupled code is to make code maintainable and easy to

update.

A dependency or dependencies are created outside the class that uses it/them. The

dependency / dependencies is/are injected from the code that calls the class any information

about the instantiation is kept away from the class itself.

Generics

Generics were added to version 2.0 of the C# language and the common language

runtime (CLR). Generics introduce to the .NET Framework the concept of type parameters,

which make it possible to design classes and methods that defer the specification of one or more

types until the class or method is declared and instantiated by client code. For example, by using

a generic type parameter T you can write a single class that other client code can use without

incurring the cost or risk of runtime casts or boxing operations.

LINQ

Language-Integrated Query (LINQ) is the name for a set of technologies based on the

integration of query capabilities directly into the C# language. Traditionally, queries against

data are expressed as simple strings without type checking at compile time or IntelliSense

support. Furthermore, one must learn a different query language for each type of data source:

SQL databases, XML documents, various Web services, and so on. With LINQ, a query is a

first-class language construct, just like classes, methods, events.

For a developer who writes queries, the most visible "language-integrated" part of LINQ

is the query expression. Query expressions are written in a declarative query syntax. By using

query syntax, you can perform filtering, ordering, and grouping operations on data sources with

a minimum of code. You use the same basic query expression patterns to query and transform

data in SQL databases, ADO .NET Datasets, XML documents and streams, and .NET

collections.

45

OAUTH

OAuth is an open standard for access delegation, commonly used as a way for Internet

users to grant websites or applications access to their information on other websites but without

giving them the passwords. This mechanism is used by companies such as Amazon, Google,

Facebook, Microsoft and Twitter to permit the users to share information about their accounts

with third party applications or websites.

RootViewController

The RootViewController is the first ViewController on the Application Stack on iOS

The RootViewController provides the content view of the window.

SPA

A single-page application (SPA) is a web application or web site that interacts with the

user by dynamically rewriting the current page rather than loading entire new pages from a

server. This approach avoids interruption of the user experience between successive pages,

making the application behave more like a desktop application. In an SPA, either all necessary

code – HTML, JavaScript, and CSS – is retrieved with a single page load, or the appropriate

resources are dynamically loaded and added to the page as necessary, usually in response to

user actions. The page does not reload at any point in the process, nor does control transfer to

another page, although the location hash or the HTML5 History API can be used to provide the

perception and navigability of separate logical pages in the application. Interaction with the

single-page application often involves dynamic communication with the web server behind the

scenes.

SQL

Structured Query Language is a domain-specific language used in programming and

designed for managing data held in a relational database management system (RDBMS), or for

stream processing in a relational data stream management system (RDSMS). It is particularly

useful in handling structured data, i.e. data incorporating relations among entities and variables.

https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/User_experience
https://en.wikipedia.org/wiki/Desktop_application
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/Dynamic_loading
https://en.wikipedia.org/wiki/Fragment_identifier
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/Comparison_of_layout_engines_(HTML5)#APIs
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_data_stream_management_system
https://en.wikipedia.org/wiki/Data_model

46

SSO

Single Sign On (SSO) is a process that permits a user to access multiple services after

going through user authentication (i.e. logging in) only once. This involves authentication into

all services the user has given permission to, after logging into a primary service. Among other

benefits, SSO avoids the monotonous task of confirming identity repeatedly through passwords

or other authentication systems.

Task Parallel Library (TPL)

The Task Parallel Library (TPL) is based on the concept of a task, which represents an

asynchronous operation. In some ways, a task resembles a thread or Thread Pool work item,

but at a higher level of abstraction. The term task parallelism refers to one or more independent

tasks running concurrently. Tasks provide two primary benefits:

1. More efficient and more scalable use of system resources.

Behind the scenes, tasks are queued to thread pool which has been enhanced with

algorithms that determine and adjust to the number of threads and that provide load balancing

to maximize throughput. This makes tasks relatively lightweight, and you can create many of

them to enable fine-grained parallelism.

2. More programmatic control than is possible with a thread or work item.

Tasks and the framework built around them provide a rich set of APIs that support

waiting, cancellation, continuations, robust exception handling, detailed status, custom

scheduling, and more.

For both reasons, in the .NET Framework, TPL is the preferred API for writing multi-

threaded, asynchronous, and parallel code.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool

