
1

SearchOnMath System Evaluation
José Carlos T. da Silva, jose.tobias@outlook.com, Federal University of Alfenas, UNIFAL-MG

Flavio B. Gonzaga, fbgonzaga@bcc.unifal-mg.edu.br, Federal University of Alfenas, UNIFAL-MG

Abstract—SearchOnMath (SOM) is a Mathematical Informa-
tion Retrieval (MIR) system, indexing mathematical content from
multiple Internet domains, using advanced techniques. Even
though the SOM system is already complex, no evaluation has
been done nor a method has been developed to assure its
reliability and performance. This paper reports the evaluation
of the SOM system, with the intent to give its engineers valuable
information about the system’s state, giving support to future
development. A dataset of queries is built directly from the
SOM’s index, with the most computational complex formula
from each group formed by a classifier. The system’s responses
for the dataset have their results categorized into expected and
invalid, also having a zero-and-one inflated beta distribution
fit. Such approach should allow SOM engineers to analyze
the system results quantitative and qualitative aspects. From
the 383 130 requests made to the SOM system, 99.94% of the
responses returned with results categorized as expected, and only
66 responses returned containing no results. The distribution fit
made possible to calculate values of expectancy and variance,
allowing efficient comparison techniques to be applied over
evaluations. We suggest that the work shown here can enhance
system engineers’ knowledge and improve the quality of the
development process.

Index Terms—information, retrieval, mathematical, system,
evaluation, performance, assurance, classifier, clustering, analysis

I. INTRODUCTION

MATHEMATICAL Information Retrieval (MIR) is an In-
formation Retrieval (IR) niche being mainly concerned

with the representation, storage, organization and access of
information items [1]. In the modern world, complex computer
systems have been developed to execute tasks addressing those
concerns, supporting human cognition on finding reduced
groups of desired knowledge from large amounts of data [2].
Considering this scenario, the development of methods to
assure that such systems are working as expected is crucial.

SearchOnMath1 [3] (SOM) is a search engine devel-
oped with the purpose of supporting mathematical content
search, where queries can be written combining text and/or
mathematical expressions in LATEX typesetting. Currently SOM
indexes more than 11 million formulae from 7 domains2, them
being: Wolfram MathWorld, Wikipedia (English version),
Stack Exchange Mathematics, Stack Exchange MathOverflow,
Socratic, NIST DLMF and Planetmath. Because of the large
size of its database, the SOM system implements a classifier
and distribute the indexed formulae along multiple disjoint
groups of similar formulae. Therefore, a formula submitted by
a user has its structure checked, and the search is performed
only inside the group where it is expected to have similar ones.
Figure 1 illustrates this idea.

1https://www.searchonmath.com
2https://www.searchonmath.com/about

Figure 1. Division of SOM formulae index into groups based on their structure
by a characterization mechanism .

To evaluate this clustering process and search operation,
our evaluation should be able to execute a search for every
group and analyze the system’s response. The SOM system has
never been through this kind of evaluation, being expanded and
updated based on the experience of its engineers. The problem
of such approach to the development is that bugs introduced
are only found late and new implemented techniques cannot
always have their value stated precisely.

In this paper we present an evaluation over the SOM system,
considering the clusterized search algorithm and operations
executed over the formulae before and during the search
engine process. The evaluation was designed with the purpose
of verifying if the system is able to properly retrieve infor-
mation from each of the groups. The paper is organized as
follows. Section II explains how the dataset is built, present-
ing information to help interpret system’s responses and the
evaluation workflow. Section III brings the evaluation results
and details about how the analysis is conducted to extract
expected knowledge about the system’s state. Directions about
future work are given in Section IV. Conclusions are drawn
in Section V.

II. METHODOLOGY

A. Dataset building

Due to its large amount of data, SOM is a distributed
system that utilizes a clustering algorithm to execute its search

https://www.searchonmath.com
https://www.searchonmath.com/about

2

when a formula query is received. Consequently, to perform
a wide and exhaustive system evaluation, we select the most
complex formula for the system to process from each of the
existing groups formed by the classification algorithm. The
formulae selected build our dataset, that is a collection of
queries to be submitted to the SOM system. Currently there are
414 498 groups in the SOM system clusterized index schema,
where 383 130 of them contain formulae in LATEX typesetting.
Therefore, the built dataset consists of 383 130 formulae in
LATEX typesetting.

B. Evaluation Format

The evaluation consists of requesting each formula in the
dataset to the system and analyzing its responses. Each for-
mula from the dataset was requested to a SOM’s REST API by
an HTTP client. The API response is received as a JSON file,
that should be parsed for analysis, containing an array with
the top ten results. Each result is composed by the following
data:

• Formula: the formula returned by SOM, considering the
submitted query.

• Similarity: a value in the interval [0.0, 1.0] ∈ R, where
1.0 means a perfect match between the submitted formula
and the one that was found by SOM; and 0.0 the most
different but still acceptable formula.

• Language: typesetting of the found formula, that should
always be LATEX.

• Abstract: page abstract where the formula was found.
• Title: page title.
• URL: page URL.
The similarity is the ranking criteria, such that the results

are sorted inside the array in descending order. Based on
this similarity parameter, the submitted formula can have its
response classified as:

• Expected: first result containing similarity equals 1.0.
• Invalid:

– Not compatible: first result does not have similarity
equals 1.0.

– No results: no results were returned for the submit-
ted formula.

Since every formula from the dataset was obtained directly
from the SOM’s index, we expect that for each formula sent
as a request the received results array response contains that
formula as the top one with similarity equals 1.0, indicating
an expected result. A result classified as invalid can happen
if there is a bug in any of the phases, described as follows.

Internet domains indexed by SOM are composed by forums
and other sites with similar collaborative content, based on
users’ contributions. Hence, it’s very common to find non-
LATEX elements inside their formulae. An example of non-
LATEX elements which are usually found inside formulae are
HTML elements. The problem is that MathJax3 [4], a tool used
by SearchOnMath to render LATEX formulae, can’t handle such
HTML elements.

3https://www.mathjax.org/

Therefore, the SOM system must be able to receive LATEX
formulae, including “some errors” like HTML elements, find
similar formulae and show results without rendering problems
on MathJax. To assure that MathJax will render formulae
on results page without errors, formulae contained into the
database are submitted to two treatments described as:

• HTML: replace HTML elements for its respective LaTeX
sequence.

• textElements: treats text input elements, deleting extra
spaces, removing trailing commas or points, and other
text format-oriented operations.

These treatments are usually sufficient to avoid errors during
the rendering phase. However, textual elements that appear
inside formulae (e.g. b = (D − root diameter)/2) can’t be
identified as mathematical elements. In LATEX typesetting there
are multiple ways of to write fractions (e.g. ’{x}\over{y}’,
’\frac{x}{y}’ and ’\frac x y’ are all compiled to the
same expression ’xy ’), hence the database indexed formulae
should be standardized. To meet such requirements, during
the search phase another two treatments are made:

• styleElements: remove font styling elements such as
’\mathbb’ that turns ’R’ into ’R’ or ’\mathrm’ that
turns ’R’ into ’R’.

• fractions: standardize the multiple possible fraction no-
tations to ’{x}/{y}’.

We apply the HTML and textElements treatments to for-
mulae before they are persisted into the SOM’s database. A
received query and a database selected formula go through the
four defined treatments (HTML, textElements, styleElements
and fractions) before a comparison method is called to assert
their similarity. Figure 2 explains the treatment flow.

Figure 2. formulae treatments for SOM operations and appliance order.

We should now be able to understand why a search ex-
tracted from the system’s own database, that doesn’t return

https://www.mathjax.org/

3

the submitted formula as the top result with similarity equals
1.0, indicates a bug in one or more of the described formula
treatment steps. That bug can lead the search to be executed
inside a wrong cluster group or propagate to the similarity
measurement algorithm. And by analyzing the request and
response formulae, it is possible to identify which operation
might contains a bug and move forward to fix its implemen-
tation.

C. Evaluation Process Workflow
Since the SOM system has never been through an eva-

luation, no workflow has been developed to support the
procedure. Figure 3 gives us the activity pattern of the reported
evaluation.

Figure 3. Step by step execution of an evaluation over the SearchOnMath
system.

To begin we should (1) select the dataset formulae directly
from the SOM’s Index as explained in Section II-A, then
the application can collect a (2) formula from the dataset
and (3) request a query to the SOM’s REST API. The
system should then begin a (4) search phase, that will retrieve
(5) information from its index and execute operations the
sent query and formatting the results as explained in Section
II-B. The (6) response is then sent back to the application,
where a (7) preprocessing operation is applied allowing only
important data to be stored for later usage. Such (8) data is
passed to a SOM Engineer that should apply an analysis (9)
method over it, giving them enough information to enhance
their (10) knowledge. Therefore, that built knowledge might
be used to answer questions correlated with the system, such
as “are changes needed?”. In case of a positive “(11) yes”
answer engineers should now have enough support to apply
changes to the system, otherwise with a negative “(11) no”
answer the evaluation is considered done.

III. RESULTS AND DISCUSSION

First we analyze how the data is categorized into expected
and invalid, as set before in Section II-B. The Table I sum-
marizes it, showing that we have roughly 0.06% of invalid

responses, indicating a failure of system operations. There are
two possible kinds of invalid results and their proportions are
described in Table II. In this one we can see that we have
only 66 requests where no information could be retrieved, and
165 cases where partial information was retrieved however not
meeting the expectation for the first result.

Table I
RESPONSES FOR THE DATASET FORMULAE REQUESTS

Type Quantity %
Expected 382 899 99.94
Invalid 231 0.06
Total 383 130 100.00

Table II
INVALID RESPONSES

Type Quantity %
No results 66 28.57

Not compatible 165 71.43
Total 231 100.00

The categorization, based either on the first result and its
similarity value leads us to another question, that is “how many
submitted queries return one, two, three... until the total of 10
or more results?”. The answer for this question is shown in
the Figure 4. Given the complexity of the built dataset that is
the highest possible for the system, Figure 4 shows that for
87.55% of the submitted queries only one result was returned.
This shows that SOM also has an efficient algorithm to discard
not relevant results.

Figure 4. Frequency of results quantity by position for the dataset requests.

For a quality analysis of such results, the Figure 5 presents
the similarity distribution by position for each of the 10
positions from the results array. The noticeable concentration
of similarity values equal to 1.0 in the first results position is
expected and happens because of the dataset complexity, being

4

correlated to the amount of responses classified as expected
shown in the Table I. From the 2-nd to the 10-th positions,
results present a similar characteristic being all inflated over
the similarity values of zero and one, therefore we can fit
a single distribution over them. The zero-and-one inflated
beta distribution [5, 6], that mixes a Bernoulli distribution for
values of zero and one with a beta distribution for the interval
of (0, 1), is chosen for this work.

Figure 5. Frequency of results similarity by position. Notice the distribution
similarity for positions from 2 to 10.

The beta distribution density function is defined with two
parameters µ and φ. Such parameters were adjusted, from the
2-nd to the 10-th positions, by using the MLE (Maximum
Likelihood Estimator) via Newton-Raphson method. Hence,
allowing us to apply the expectancy and variance formulae as
explained by Ospina and Ferrari [5]. The arithmetic mean and
sample variance was used to the 1-st results’ position due to
its concentration over a single value. The results similarity
expectancy (E[X]) by position and variance (V ar[X]) by
position can be seen in Table III.

Table III
EXPECTANCY OF SIMILARITY AND VARIANCE BY RESULTS ARRAY

POSITION

Position E[X] V ar[X]
1 0.9999641 0.0000097
2 0.6596060 0.1288510
3 0.3272972 0.1175128
4 0.2660084 0.0913476
5 0.2410593 0.0767783
6 0.2249611 0.0664863
7 0.2132837 0.0605189
8 0.2118640 0.0584650
9 0.2072782 0.0581457

10 0.2069176 0.0577592

As a way to improve the results quality comparison of
evaluations, a graphical method is shown by Figure 6. The
cumulative expectancy value is plotted as a curve, with error
bars indicating the standard deviation of the similarity at
given positions. The cumulative expectancy values shown for
a given position j ∈ [1, 10], are then obtained by summing
up the expectancy values in the interval [1, j]. Both values, of
expectancy and of standard deviation (which is the square root
of the variance), were taken from the Table III.

Figure 6. Cumulative similarity expectancy curve and standard deviation error
bars by position. The AUC (Area Under Curve), of the cumulative similarity
curve, is also displayed as an indicator of the responses’ quality.

The AUC (Area Under Curve) was obtained by using the
trapezoid method. The AUC acts as a quality indicator for the
results obtained from the evaluation, and should be analyzed
taking into consideration the standard deviation values and its
effects towards the system.

IV. FUTURE WORK

Usually accepted metrics for performance comparison
among systems, precision and recall [7] can also be obtained
with the same created dataset or a part of it. The precision and
recall metrics are taken by comparing the set A of expected
results with the set B of results returned by the system. To
obtain the set A, one should use the similarity calculation
algorithm with every single dataset input against the whole
database, and collect the the top j ∈ [0, k] results ordered by
similarity, where k is the size of the dataset. This process will
not be utilizing the system’s classifier algorithm for the search,
the formulae treatment errors should be nullified by being
applied on both sides equally and not propagated, and the
specialist will be the algorithm used to measure the similarity
parameter. To obtain the set B, one should request the same
formulae from the dataset through the usual SOM system
process and collect the top j results ordered by similarity.

5

V. CONCLUSIONS

The SOM system have never been through this kind of
evaluation, therefore a method to support the procedure and
analyze obtained data was developed and applied. Results
obtained from the evaluation were categorized showing more
than 99.96% of results as expected, while descriptive statistics
showed that an efficient approach to discard not relevant results
is also being taken. A zero-and-one inflated beta distribution
was fitted to results by position, giving the possibility to
analyze the quality of such responses. By being able to
calculate the expectancy and variance of the data, is shown that
a comparison of evaluations is possible given the observation
of a graph with the expectancy by position cumulative curve
and its AUC (Area Under Curve) value. Such evaluation
methods should give SOM engineers a faster way to identify
system inconsistent operations and to assert the value of new
techniques to be implemented.

REFERENCES

[1] Gerard Salton and Michael J. McGill. Introduction to
Modern Information Retrieval. McGraw-Hill, Inc., New
York, NY, USA, 1986. ISBN 0070544840.

[2] Justin Zobel. What we talk about when we talk about
information retrieval. SIGIR Forum, 51(3):18–26, 2018.
ISSN 0163-5840.

[3] Flavio Barbieri Gonzaga. SearchOnMath - Mathematical
Information Retrieval System. https://www.searchonmath.
com, Aug 2008.

[4] American Mathematical Society. MathJax - mathematical
notation display for browsers. https://www.mathjax.org/,
Jan 2009.

[5] Raydonal Ospina and Silvia L. P. Ferrari. Inflated beta
distributions. Statistical Papers, 51(1):111, Mar 2008.
ISSN 1613-9798. doi: 10.1007/s00362-008-0125-4. URL
https://doi.org/10.1007/s00362-008-0125-4.

[6] Catherine Forbes, Merran Evans, Nicholas Hastings,
and Brian Peacock. Beta Distribution, chapter 8,
pages 55–61. John Wiley & Sons, Ltd, 2010.
ISBN 9780470627242. doi: 10.1002/9780470627242.
ch8. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
9780470627242.ch8.

[7] Ellen M. Voorhees. The philosophy of information
retrieval evaluation. In Revised Papers from the Sec-
ond Workshop of the Cross-Language Evaluation Forum
on Evaluation of Cross-Language Information Retrieval
Systems, CLEF ’01, pages 355–370, London, UK, UK,
2002. Springer-Verlag. ISBN 3-540-44042-9. URL http:
//dl.acm.org/citation.cfm?id=648264.753539.

https://www.searchonmath.com
https://www.searchonmath.com
https://www.mathjax.org/
https://doi.org/10.1007/s00362-008-0125-4
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470627242.ch8
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470627242.ch8
http://dl.acm.org/citation.cfm?id = 648264.753539
http://dl.acm.org/citation.cfm?id = 648264.753539

	Introduction
	Methodology
	Dataset building
	Evaluation Format
	Evaluation Process Workflow

	Results and Discussion
	Future Work
	Conclusions

