
Graph based analysis of mathematical

knowledge structure on Metamath

Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Núcleo de Ciência da Computação, Universidade Federal de Alfenas,
37133-840, Alfenas - MG , Brazil

{reuel,fbgonzaga}@unifal-mg.edu.br

{valmir}@cos.ufrj.br

Abstract. Axioms and thousands of theorems compose the modern
mathematical body. Software assisted proofs is a reality and Metamath
serves this purpose. We extract from Metamath proofs and represent
them through a directed acyclic graph. Modeling mathematical knowl-
edge in this way makes it possible to study the intrinsic characteristics
of the network formed by axioms and theorems. We perform a degree
distribution study on the graph, decompose the graph into layers, look
the length of mathematical proofs, and a study about the reachability of
axioms to theorems in order to determine important axioms. This work
proposes to analyze this organic structure and how elements relate to
each other.

Keywords: metamath, graph analysis, mathematics, lognormal, power-law

Introduction

Aristotle was an important person to give to Logic a status of science of ideas
and the mind process [1]. He is the one who establishes elements such as ax-
ioms, definitions, theorems and hypotheses, which work as tools to describe the
knowledge in a methodical and deductive way. According to [2], “Aristotle saw a
deductive science as one structured building of truths chained together through
logical relationships, founded over some fundamental per-conceptual ideas that
cannot be demonstrated but rather taken from granted”.
It is necessary to have a start point to begin crafting theorems; such elements
are called axioms, and they do not need to be proved from previous axioms be-
cause they are essentially simple on themselves and can be easily verified to be
true. “For the sake of proof, the first principles must be indemonstrable, since
otherwise regression would proceed to infinity. And how do you know the truth
of the first principles? By induction.” [1, p. 39].

2 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

1 Metamath

“Metamath is a computer language and a computer program for achieving, ver-
ifying, and studying mathematical proofs at a very detailed level” [3]. It works
through simple rules of replacement to prove theorems. Its relevancy for this
work relies on its knowledge database, which is an ASCII text file, whence ax-
ioms, theorems and their relationships can be extracted.

Metamath is also available at http://us.metamath.org/ to be explored.
Each axiom, theorem, and some other elements can be accessed at the address
http://us.metamath.org/mpegif/<name>.html where <name> is the name
of the desired elements. A thorough explanation about how to read the mathe-
matical proofs is available on the website itself.

Metamath not only deals with fundamental mathematics such as theorem set,
but also has some other major areas of knowledge. The present work is concerned
exploring the Metamath Proof Explorer area of Metamath, where the foundation
of mathematics is represented. The other sections such as Hilbert Space Explorer
and Higher-Order Logic Explorer are endowed by the Metamath Proof Explorer
section.
Metamath is readily available to download; it comes with a group of .mm ASCII
files where the mathematical knowledge is contained. The file used for this work
is the set.mm one and it is indiscriminately referred throughout this paper as
"metamath database", "database" or "knowledge base". More instructions about
the file format, organization, syntax summary and other helpful topics are found
within the file itself and in [3, pp. 33, 91, 155].

1.1 Metamath structure

To give the reader a glimpse on the metamath database and how to interpret it,
table 1 summarizes three concrete examples taken directly from it.

Metamath has more elements such as definitions, syntax definitions, con-
stants and variables, but those are pertinent to metamath itself. The aim of this
work is to only analyze how the axioms and theorems relate to each other, so
it is enough to know, for a given theorem, which are the other axioms and/or
theorems necessary to directly prove it.

Hitherto, the Metamath database contains 72 axioms 1 and 17505 theorems 2,
not accounting for the users' mathboxes, which is explained and justified in
section 5.4. In order to manipulate such information, it is convenient first to
represent it on an adequate form with which it can be easily queried, manipulated
and analyzed. For such purpose, based on all the details found on [3], a grammar
has been written to parse the database file into a graph structure. It makes
the knowledge extraction easier and less error prone compared to crawling the
metamath website for instance. A set of lexical rules and syntactical rules in
appendices A.1 and A.2, respectively, describe the relevant information contained
in the metamath database.

1 Considering $a elements within metamath file whose name starts with "ax-"
2 Considering $p statements within metamath file

Graph based analysis of mathematical knowledge structure on Metamath 3

Metamath database

(relevant lines)

Mathematical

representation
Interpretation

ax-1 $a |- (ph -> (ps -> ph)) $.
Axiom (ax-1):
` (φ → (ψ → φ))

The first of three axioms of
propositional calculus.a

min $e |- ph $.

maj $e |- (ph -> ps) $.

ax-mp $a |- ps $.

Hypotheses:
` φ (min)
` (φ → ψ) (maj)

Axiom (ax-mp):
` ψ

Inference rule known as Modus

Ponens. The rule says that if φ
happens, and the condition says
that φ → ψ, than ψ holds true.b

mp2b.1 $e |- ph $.

mp2b.2 $e |- (ph -> ps) $.

mp2b.3 $e |- (ps -> ch) $.

mp2b $p |- ch $=

wps wch wph wps mp2b.1

mp2b.2 ax-mp mp2b.3 ax-mp

$.

Hypotheses:
` φ (mp2b.1)
` (φ → ψ) (mp2b.2)
` (ψ → χ) (mp2b.3)

Theorem (mp2b):
` χ

Proof:
1. ` ψ
2. ` (φ → ψ)
3. ` ψ (using steps 1 and 2)
4. ` (φ → ψ)
5. ` χ (using steps 3 and 4)

Theorem that extends the Modus

Ponens in order to use two
inferences.c
The first two steps of proof use of
hypotheses 1 and 2.
The third step uses the previous
steps with the axiom ax-mp as it
uses two hypotheses as "inputs".
Steps 4 and 5 follow a similar
approach.
The last step finishes the proof.

a http://us.metamath.org/mpeuni/ax-1.html
b http://us.metamath.org/mpeuni/ax-mp.html
c http://us.metamath.org/mpeuni/mp2b.html

Table 1: Elements from metamath database and their interpretation

4 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

2 Representation

This work proposes a graph-like representation of Metamath. To understand how
the data is modeled from it, consider the arbitrarily chosen theoremmpd 3. The
portion of the raw metamath file necessary to describe it is:

1 ${

2 mpd.1 $e |- (ph -> ps) $.

3 mpd.2 $e |- (ph -> (ps -> ch)) $.

4 $(A modus ponens deduction. (Contributed by NM, 5-Aug-1993.) $)

5 mpd $p |- (ph -> ch) $=

6 wph wps wi wph wch wi mpd.1 wph wps wch mpd.2 a2i ax-mp $.

7 $([5-Aug-1993] $)

8 $}

Lines 1 and 8 begin and end, respectively, a Metamath scope [3, pp. 113-114].

Lines 2 and 3 describe hypotheses,mpd.1 andmpd.2, respectively. A hypothesis in metamath
is “a logical truth (such as ‘assume x is prime’) that must be established in
order for an assertion requiring it to also be true.” [3, pp. 105-106]. One anal-
ogy to grasp how hypotheses work is to visualize a theorem as a computer
method which requires certain input parameters and then returns some re-
sult. As long as the parameters are correct, the result is also guaranteed;
hypotheses are mandatory parameters and the theorem assertion is the re-
turn of the function.

Line 4 is a comment left by the author of the contribution.

Line 5 is the most important one with the theorem assertion (between the $p and
$= symbols). It asserts that ` (φ → χ) and its proof is represented, in
reverse Polish notation, between the $= and $. symbols. The names wph,
wps, wi, wph, wch, mpd.1, wch, mpd.2, a2i, and ax-mp are all the
necessary elements to construct a proof, which metamath then uses to assert
` (φ → χ) through adequate substitutions, which are thoroughly explained
in [3, p. 114].

3 http://us.metamath.org/mpegif/mpd.html

Graph based analysis of mathematical knowledge structure on Metamath 5

wph, wps, and wch are all variables necessary for metamath to know how to make substitutions
and verify a proof. They stand for the Greek letters φ, ψ and χ, respectively.
These variables represent well-formed formulas (wff) in metamath, meaning
that they can represent other logical assertions [3, pp. 20].

wi is a syntax definition, and it says that “if φ and ψ are wffs each, so is the
construction φ→ ψ”, which can be read as “φ implies ψ”. Syntax definition
is a way to produce a new valid wff from other wffs.

mpd.1 and mpd.2 are hypotheses necessary only to prove the mpd theorem. No other theorem
can use them because they are scoped to the mpd theorem. The scope is
created by the ${ and $} symbols, although it does not affect the axioms and
theorems defined within it. Axioms and theorems can be referenced later on
in the file by any other theorem, contrary to hypotheses that can only be
referenced within their own scope.

a2i is another theorem used in one of the proof's steps. It also has its own
hypotheses. In order to a2i be used on the proof of mpd, a2i must have be
previously proved.

ax-mp is, within metamath, an axiom which is similarly used as the a2i theorem to
prove mpd, but it does not depend on a previous proved assertion; it stands
on its own since it is an axiom.

How the substitutions are made and more thorough details regarding the file
syntax, its elements and their meaning can be consulted on [3].

After describing all the main elements of such small portion of the metamath
database file, the graph in figure 1 is proposed. Further elements for the ax-mp
axiom and the a2i theorem are also shown on it; they do not appear on the file
excerpt but are found within set.mm file. Notice that in figure 1 more elements
could have been represented as nodes connecting or being connected by arcs, such
as syntax definitions and constants, but that would litter the representation with
nodes that are not important for the intents of this work. Even the hypotheses
nodes will be discarded for the herein proposed analyses because they serve the
internal mechanisms of metamath for making substitutions in order to verify
a proof. They ultimately form satellites around their theorem nodes; therefore,
they do not contribute in a special way to this research.

Axioms, hypotheses, and (already proved) theorems can be used to prove a
new theorem. Axioms and theorems can be represented as nodes and the usage of
one by the other on its proof can be indicated as an arc going from the supporting
axiom/theorem to the theorem being proved. The hypothesis on figure 2a was
shown only to illustrate how the graph could have been modeled. Since they are
not of interest for this work, the model is going to be simplified even further as
figure 2b shows, taking only axioms and theorems into consideration.

6 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig. 1: Metamath database represented as a directed graph, with the arcs showing
that ancestor nodes assist the construction of a proof for a new theorem, yet the
arcs do not show how the proof is constructed nor do they show how many
times one element has been used on a proof. Other elements such as variables,
constants, and definitions are not contemplated for this illustrative modeling.

(a) More general schema to model the
metamath database as a graph

(b) Simplified schema to model the
metamath database as a graph of axioms

and theorems.

Fig. 2: General schema for modeling Metamath as a graph

Graph based analysis of mathematical knowledge structure on Metamath 7

3 Graph storage

As the metamath database is fairly large (+140 Mb), it would be inadvisable to
parse it every time or work with it directly. It becomes evident that a proper
solution has to be determined to persist the parsed information. Using relational
databases would not be appropriate to store a graph-like related information
because relational databases work with foreign keys to relate information and
costly join operations [4]. Besides, after storing it is necessary a proper way of
traversing and analysing the graph. To take advantage of the already available
graph database technology, Neo4j has been chosen to support this work. Neo4j is
an avail for both storing the parsed information and querying for data in a more
adequate manner, since it is a graph database with all the Create, Recovery,
Update and Delete (CRUD) functionalities one would expect from a Database
Management System (DBMS). To query data and manipulate the graph, it offers
both a Java API and a high-level language called Cypher. Neo4j is thought to
assign importance to the relationships more than the entities themselves, as
it is usually done in relational databases. It means that to model and relate
information is more flexible and expressive than in other systems that work with
foreign keys or reduction maps to indicate how the information is related. To
make relationships first class citizens, neo4j exposes the data throughout a graph
model [4].

4 Graph structure

As axioms and theorems are modeled by the aforementioned methodology in
section 2, it is quite easy to see that the output graph is a Directed Acyclic
Graph (DAG): Axioms do not need to be proved from other axioms or theorems,
so they are the source nodes of our graph. Theorems can only be proved from
axioms or other erstwhile proved theorems. Also, there could not be cycles as
it would mean that one theorem would need its own consequent to prove itself,
which would be an illogical scenario. The metamath file structure does not allow
for a theorem to refer to a not yet existing theorem; that means that lines on the
metamath set.mm file can only refer to previous lines, which makes it impossible
to form cycles in the proof structure. As explained before, the arcs go out from
axioms to new theorems and from already proved theorems to new ones. If the
arcs are reversed, then the graph can be seen as a dependency graph, where
axioms would be sink nodes rather than source nodes and new theorems out
point out to other already proven theorems.

8 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

5 Metamath intricacies

Parsing the file and analyzing the graph is not as straightforward as one might
think. Some theorems within metamath are actually not useful theorems, or
maybe some of them are just helping mechanisms that exist for very specific
reasons which are not practical for this work. Such cases will be listed and
briefly described. This is not a claim to include all pitfalls, but the ones that
have been discovered while investigating metamath.

5.1 Theorems which are actually not theorems
idi - This theorem has been ignored from analysis as its page states “This in-
ference rule, which requires no axioms for its proof, is useful as a copy-paste
mechanism during proof development in mmj2. It is normally not referenced in
the final version of a proof, since it is always redundant and can be removed [...]”.

weq, wel and wsb - Those three elements once existed within metamath
as axioms, but they have been reformulated as theorems. They have been con-
structed in that way to avoid overloading the =, ∈ , and [x/y]φ connectives,
respectively. They work as a special construction within metamath, and their
pages 4 5 6 state that each element is to be considered as a primitive syntax,
even though each one "derives" from wceq, wcel, and wsbc syntax definitions,
respectively. Therefore, they have been ignored for this work.

The dummylink7 theorem serves only the purpose of filling a gap during the
construction of a proof. It has been discarded as its description states: “This is a
technical inference to assist proof development. It provides a temporary way to
add an independent subproof to a proof under development, for later assignment
to a normal proof step.”

5.2 ax-meredith axiom and meredith theorem
A tree has been found beginning from the axiom ax-meredith. Performing a
depth-first search (DFS) from this axiom led to a tree with the follow theorems
as leaves: ax1, ax2 and ax3. The purpose of this axiom is to demonstrate that
the three axioms from the propositional calculus (ax-1, ax-2, and ax-3), the
Carew Meredith's theorem, and Lukasiewicz's axioms are all equivalent systems.
The reason for ignoring all this tree is that all tree elements state that “proof
modification is discouraged” and “new usage is discouraged”. Since they only
serve for a very specific reason and because no new theorems are likely to sprout
from them, it was decided to exclude them from analyses. The DFS nodes are
listed in table 2.
4 http://us.metamath.org/mpeuni/weq.html
5 http://us.metamath.org/mpeuni/wel.html
6 http://us.metamath.org/mpeuni/wsb.html
7 http://us.metamath.org/mpegif/dummylink.html

Graph based analysis of mathematical knowledge structure on Metamath 9

ax-meredith luk-2 luklem4 ax3
luklem6 ax2 luklem7 luklem8
luklem5 ax1 luk-1 luklem2
luklem3 luklem1 merlem13 merlem11
luk-3 merlem12 merlem10 merlem9

merlem8 merlem7 merlem5 merlem4
merlem6 merlem3 merlem2 merlem1

Table 2: DFS components found starting from ax-meredith.

5.3 Isolated nodes

Within metamath, there are six axioms which are not used by anyone. They are:
ax-7d, ax-8d, ax-9d1, ax-9d2, ax-10d, and ax-11d. They were not used to
construct the graph.

5.4 Users' mathboxes

Metamath also has the concept of users' mathboxes. It allows contributors to
have a workspace to develop their own proofs that later may be incorporated
into the official body of metamath. Metamath has an internal mechanism for
identifying user's mathboxes. A dummy theorem called mathbox8 exists to iden-
tify them. The mathbox theorem can be found within the set.mm file as

mathbox $p |- x = x $= vx equid $.

All theorems after this line belong to someone's mathbox. It has been ob-
served that many theorems hereafter contain some description similar to “Moved
to <theorem name> in main set.mm and may be deleted by mathbox owner”,
meaning that many theorems counted for the main body of set.mm file also
exists within someone's mathbox. All mathboxes have been ignored. It would be
complicated to manually scan through theorems to decide which should be kept
and which should be removed. As of the writing of this work, 8 axioms and 8258
theorems exist in different users' mathboxes.

8 http://us.metamath.org/mpegif/mathbox.html

10 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

6 Graph Metrics

Having described metamath, how it has been proposed as a graph, and which
peculiarities have been left out, the following sections will describe a series of
concepts and analysis that have been performed upon the graph. The main
purpose is to investigate how axioms and theorems relate to each other, and if
important or essential axioms and theorems can be discovered purely from graph
algorithms. The terms "graph" and "network" are interchangeably used for the
following sections. The term "arc" is preferred over "edge" since the graph is a
directed one.

6.1 Node degrees

Based on [5], for a network with n nodes and m arcs, each node i has a set Ii
of incoming arcs and a set Oi of outgoing arcs connecting i to other neighbour
nodes. For a node i, its indegree is δ+

i = |Ii|, its outdegree is δ−i = |Oi|, and its
total degree is i = |Ii ∪Oi| ≤ δ+

i + δ−i . It is also known that max(δ+
i , δ

−
i) ≤ δi.

The present work further defines source nodes ns as having δ+
s = 0, meanwhile

sink nodes nt have δ−t = 0. Nodes whose δi = 0 are isolated nodes and they have
been removed as previously explained.

The straightforward global metrics for a graph [5] are its indegree and out-
degree mean, which are necessarily equal and are given by

δ− = δ+ = 1
n

∑
i

δ+
i = m

n
(1)

The average degree denoted by δ is given as

δ+ ≤ δ = 1
n

∑
i

δi ≤
1
n

∑
i

(δ+
i + δ−i) = 2δ+ (2)

6.2 Basic distributions

The degree distribution of networks have been the concern of many studies
regarding both natural phenomena and man-made structures, such as power
grid [6] , solar flares [7] , mobile phone calls [8] , Internet routers and web
pages [9–11] . More examples can be found in [12, p. 2].

The degrees of these aforementioned structures tend to follow a power-law
distribution. Sometimes, though, structures are better described by a lognormal
distribution or other distributions like the double Pareto [8,13]. Both power-law
and lognormal distributions have been described in the literature to behave in
some similar ways and to have similar generative models [13].

Graph based analysis of mathematical knowledge structure on Metamath 11

A non-negative random variable X is said to follow a power-law distribution
if [13]:

P [X > x] ∼ cx−α, c > 0, α > 0 (3)

Equation 3 means that the probability of a value x to occur is inversely
proportional to itself with an appropriate α exponent. A random variable X
follows a lognormal distribution if Y = lnX follows a normal (Gaussian) distri-
bution. The normal distribution Y is given by the density probability function
(PDF) [13]:

f(x;µ, σ) = 1√
2πσ

e−(y−µ)2/2σ2
(4)

The PDF for a lognormal distribution is [13]:

f(x;µ, σ) = 1√
2πσx

e−(ln x−µ)2/2σ2
(5)

6.3 Network topology

The distributions of δ+, δ−, and δ describe the topology of a network. Networks
can be classified into two broad groups depending on their distribution: either
as a random network or as a scale-free network [11]. A random network
describes graphs whose degrees follow a Poisson distribution, whereas a scale-
free network is characterized by a power-law distribution.

In a random network, “a key prediction of random network theory is that,
despite the random placement of links, most nodes are assigned approximately
the same number of links” [11, p. 34]. It means that most of the nodes in a
random network will have a similar degree; the average degree of the network in
this case. In contrast, in a scale-free network, “the power-law distribution implies
that nodes with few links are abundant, while a small number of nodes have a
large number of links” [11]. In other words, scale-free networks usually have hubs
with a high connectivity to other nodes. While those hubs are scarce, nodes with
a few number of connections are abundant.

One last remark about scale-free networks is that “[...] a power-law distribu-
tion does not possess an intrinsic scale, and its average degree does not convey
much information about the network structure. The absence of an intrinsic scale
in degree in networks with a power-law degree distribution motivates the concept
of a scale-free network” [11, p. 36]. This can be seen in figure 3.

12 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig.3: Visual comparison between a Power-law distribution and a Poisson dis-
tribution. While the power-law distribution is not described by the mean value
of its data, the mean value of the random dataset describes well the information
since it is normally distributed around it.

6.4 Metamath analysis

Analyzing the degrees of metamath network yields interesting results about its
structure. Table 3 summarizes statistics for degrees regarding δ+, δ− and δ. The
values are consistent with equations 1 and 2.

Mean (µ) Std. Dev. (σ) Max Degree Skewness
Total Degree δ 36.2708404607 105.473426224 6093 23.7258374911
Indegree δ+ 18.1354202303 23.9225902026 248 2.97762634271
Outdegree δ− 18.1354202303 104.974135948 6091 24.4898820198

Table 3: Statistics for a total of 17538 nodes and 318059 arcs regarding
nodes'total degree, indegree and outdegree.

An important observation is the matching µ values for both δ+ and δ− which
asserts the correctness of the data according to equation 1. These values could
not be different since one node's outgoing arcs are the other nodes' incoming
arcs in the graph. It is evident that δ = δ+ + δ− = 2δ+ as equation 2 states.
Tables 4 and 5 summarize the nodes having the highest values for δ+ and δ−.
Table 4 also happens to be the top 10 nodes ordered by δ.

Graph based analysis of mathematical knowledge structure on Metamath 13

Node name Total degree (δ) Indegree (δ+) Outdegree (δ−)
syl 6093 2 6091
eqid 3734 2 3732
syl2anc 3499 2 3497
adantr 3285 2 3283
a1i 2716 2 2714
ax-mp 2461 0 2461
adantl 2356 2 2354
syl3anc 2246 2 2244
simpr 1939 2 1937
eqtrd 1826 2 1824

Table 4: Top 10 nodes sorted by outdegree. They are the same top 10 if ordered
by total degree.

Node name Total degree (δ) Indegree (δ+) Outdegree (δ−)
lgsquadlem1 249 248 1
logtayl 233 230 3
lgsquadlem2 231 230 1
imasdsf1olem 221 220 1
bposlem6 212 211 1
cantnflem1 207 206 1
itg2monolem1 204 203 1
efrlim 204 203 1
pserdvlem2 197 196 1
ostth3 197 196 1

Table 5: Top 10 nodes sorted by indegree.

14 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

6.5 Interpretation of individual in-, out-, and total degree.

In order to understand the topology of the network, we analyze its degrees dis-
tributions. To clarify the interpretation of the arcs directions, we describe them
as following:

The outdegree of nodes is concerned with how much a node helps the rest
of network to be built; one node with a high outdegree value indicates that many
other theorems rely on it to be proved; perhaps it is some essential mathematical
knowledge. It does not play an active role but rather has a passive behaviour
on the network construction. Usually, while trying to prove a new theorem, we
search for known theorems that can help proving the new one, rather than ran-
domly gathering proven theorems and trying to craft a new one from them. This
concept is better illustrated on the next paragraph.

The indegree of nodes is concerned with how many other theorems and
axioms are needed to prove one particular theorem; high indegree suggests more
complex theorems which rely on many previously proven theorems. The inde-
gree for any node can potentially be reduced since mathematical proofs are not
unique and are susceptible of being shortened, therefore using fewer theorems
in its proof than actually needed. For such reason, the indegree should not be
remarked as one inflexible measure but rather as a more malleable one as the
network evolves guided by human knowledge. One important remark here is
the possibility of randomly choosing one theorem and reduce its proof length,
consequently reducing its indegree; meanwhile, it is not possible to peer at one
random theorem or axiom and deliberately reduce its outdegree. It would be
necessary to look at all theorems which depend on it and try to shorten their
proofs regarding this particular axiom or theorem in order to purposefully and
hopefully reduce the randomly chosen outdegree.

Finally, about the total degrees, it is difficult to give one simple de-
scription about them. From table 4 it is possible to see that nodes with high
total degree are governed solely by their outdegree. Similar conclusions can be
drawn from table 5. All source nodes have their total degree totally accounted
by their outdegree (ns → δ−s = δs). Conversely, all sink nodes have their total
degree entirely accounted by their indegree (nt → δ+

t = δt). What, then, could
be inferred from a node with, say, one-half of its total degree being composed
of its indegree and the other half of its outdegree (1

2δi = δ+
i = δ−i)? And how

frequently would that happen? Figure 4 shows the proportion of node degrees for
all nodes based on their in- and out- degree. The rightmost values represent all
sink nodes; meanwhile, the leftmost values represent all source nodes (axioms).
It is clear that this proportion varies greatly.

Graph based analysis of mathematical knowledge structure on Metamath 15

Fig. 4: Proportion of in- and out- degrees for all nodes. The values are ordered
according to the outdegree proportion to create a smooth curve.

16 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

6.6 Distribution analyses

Figure 5 shows the results for each degree distribution. One simple empirical
way of testing a distribution for power-law behaviour is to use a log-log plot,
where the logarithmic scale is used for both axes, and see if the data appears as
a straight line [12, p. 1].
The distribution in figure 5 suggests a power-law for the outdegree. The total
degree seems to follow a log-normal since its shape resembles a parabola [8]. Not
so clear is the indegree distribution which stands in the middle of the two other
distributions. Notice that in order to produce the log-log plot, zero-values are not
considered, thus the frequency for nil in- and out- degrees are not represented
in the figure, but their values are the number of sources (65) and sinks (2529),
respectively. The right-hand end of the figure is noisy due to the size of the
graph which only contains a little more than 17000 nodes. When it happens, one
explanation is that “the power-law distribution dwindles in this region, meaning
that each bin only has a few samples in it, if any. So the fractional fluctuations
in the bin counts are large and this appears as a noisy curve on the plot.” [12].

Fig. 5: All three degree distribution in a log-log plot. The outdegree seems like
the best candidate for a power-law distribution. The total degree distribution
seems to be better fit into a lognormal distribution. The indegree stands in
between the power law or lognormal distributions. Integer bins have been used
to group data.

Graph based analysis of mathematical knowledge structure on Metamath 17

Total degree analysis The total degree indeed follows a log-normal distribu-
tion. Figure 6 shows the frequency histogram fitted by the log-normal distribu-
tion. Figure 7 shows the normal distribution for the log of the variable , which
confirms the quality of the log-normal fit.

Indegree analysis The same quality could not be achieved while fitting the
indegree data. The histogram in figure 8 loses precision for δ+ < 14 and it peaks
at two points: δ+ = 2 and δ+ = 3; these two peaks extrapolate the fitting. Figure
9 shows that the log of the variable δ+ does not fit the normal distribution as well
as in figure 7. As previously explained, since indegree represents elements that
are necessary to prove a theorem, and since proofs can be shortened, it seems
possible that throughout the network evolution the distribution will change to a
more definitive and conclusive shape. The peaks in figure 8 could lead someone
to wonder if a power-law would fit some range of the indegree distribution. In
order to test it, two power-law fits have been tried, yet without success. In
figure 10 we tried to exclude the first point of the distribution and afterwards we
tried ignoring more points to fit the tail of the data. Neither approaches yielded
significant outcomes, therefore the power-law for indegrees has been rejected.

Outdegree analysis It has been observed that δ− visually follows with better
accuracy the power-law distribution if we ignore sink nodes and unitary outde-
gree nodes (δ− = 1). It is important to understand that identifying power-laws
can be tricky. Usually, the strategy is to plot the histogram and see if it appears
as a straight line on a log-log plot [12]. Figure 11 shows how data looks more like
a straight line, albeit it is hard to tell how the line should go through the right
side. As previously said, this occurs because of the data scarcity for large values.
Striving for accuracy, we apply the proposed method found on [12] which uses
the cumulative probability distribution function. Instead of using the histogram
of the data, the probability P (x ≥ δ−) is rather used.

P (X) =
∫ ∞
x

p(x′)dx′ (6)

Even though the representation of data is no longer as simple as its histogram,
if the data follows a power-law p(x) = Cx−α, then

P (X) =
∫ ∞
x

x′−αdx′ = C

α− 1x
−(α−1) (7)

Therefore, the cumulative distribution also follows a power-law, but with an
exponent α− 1 [12]. In figure 12 we plot the complementary cumulative proba-
bility of δ− being greater than a certain value. It naturally decreases for large
values. We observe that for δ− ∈ [4, 99] a power-law holds true with exponent
α − 1 = 0.7745. The nodes contained within that range sum up to 6772 nodes,
thus accounting for 38.61% of the total network. After δ− ≥ 100, the data
curves and deviates from the straight line.

18 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig.6: Log-normal distribution fit for the total degree of the graph nodes

Fig. 7: Log of δ using integer bins fitted by a normal distribution. The log of the
variable follows a normal distribution.

Graph based analysis of mathematical knowledge structure on Metamath 19

Fig.8: The indegree distribution does not follow a lognormal distribution prop-
erly. Zero values are not considered for the lognormal fitting.

Fig.9: Log of δ+ using integer bins fitted by a normal distribution. The fit is
unsatisfactory and inconclusive about the distribution.

20 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig. 10: Trying to fit δ+ with a power law distribution. The points do not seem
to follow any power law for the most general case.

Graph based analysis of mathematical knowledge structure on Metamath 21

Fig. 11: Outdegree fitted by a power law. The first point of the outdegree distri-
bution has been excluded.

Fig. 12: Portion fitted by power-law with slightly concave curvature due to finite
size effect.

22 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

7 Source decomposition

Given a Directed Acyclic Graph (DAG), its topological sorting reveals the prece-
dence of connected elements [14]. In our case, it shows the dependency of latter
theorems upon previous theorems and axioms. For every arc (u, v), it indicates
that u must occur before v can occur [14]. Inasmuch as the graph has an acyclic
orientation, we do a source decomposition of the graph. This decomposition is
similar to the sink decomposition described in [15, p. 565], yet the operations
are performed upon source nodes rather than on sink nodes.

In the source decomposition, for all source nodes, group them together into
a layer L0. Then, all their direct neighbours are grouped into a layer L1. The
process continues until the last set of possible nodes have been assigned into
a layer Lλ−1. A node is in a layer Lk, 0 ≤ k ≤λ−1 if and only if the longest
directed path from it to a source has k edges. Two layers Lk and Ll are said to be
successive if and only if |k−l| = 1; contrariwise, they are said to be nonsuccessive.
Every node in Lk has at least one neighbour in Lk−1, 1 ≤ k ≤ λ − 1. λ is the
length of the decomposition.

The same process can be performed by selecting first the sink nodes, likewise
done in [15]. Given the structure of the herein described graph, we find the
decomposition by sources a more natural approach in order to study the structure
of dependency among nodes.

This decomposition shows the largest path between two nodes. One idea be-
hind this decomposition process is to identify potential bottleneck layers within
the network. That is, layers with only a few nodes within it. For example, travers-
ing the graph from a starting axiom on layer L0 to some node in layer Lk, it
has to have at least one path which goes through all the intermediary layers
Lj , j = 1, ..., k− 1, because each layer represents one step of dependency among
nodes. A layer Lk, 1 ≤ k ≤ λ − 2, containing only a few nodes would indicate
that all the following layers k + 1 depend on it to be proven. Notice that even
if a different set of theorems could make for a new demonstration, it would still
be constricted by the narrow layer Lk unless it could be entirely proven from
theorems appearing only before layer Lk, yet we find it unlikely for most cases.

Figures 13 and 14 show the size of each layer after decomposing the graph
starting from source nodes. As it can be observed, a valley is formed around the
fifty-seventh layer, which only contains three theorems, and thereafter the layers
grow in width again. The theorems found are sb39, sb410, and sb5611. Since it
is difficult to see details on figures 13 and 14, table 6 lists the 20 shortest layers
found during the source decomposition.

9 http://us.metamath.org/mpeuni/sb3.html
10 http://us.metamath.org/mpeuni/sb4.html
11 http://us.metamath.org/mpeuni/sb56.html

Graph based analysis of mathematical knowledge structure on Metamath 23

0 25 50 75 100 125 150 175 200 225 250 275

0

50

100

150

200

250

Fig. 13: Barplot of the width of each layer after a decomposition by sources.

0 25 50 75 100 125 150 175 200 225 250 275
10

0

10
1

10
2

10
3

Fig. 14: Barplot of the width of each layer after a decomposition by sources using
a log scale on the y-axis for a better visualization.

24 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Layer Layer size Layer components

4 4 syl mpi id 2alimi
14 5 com4l com35 con2i tbwsyl re1luk1
15 5 com4t com14 com5l nsyl notnot1
16 6 com4r com24 com52l notnoti con1d con3i
19 4 con1i con4i ja pm2.01d
56 6 equs5 ax11v ceqsex6v ceqsex8v clel2 clel4
57 3 sb3 sb4 sb56
246 6 itgaddlem2 itgmulc2lem1 bddibl efif1o eff1olem basellem4
247 6 itgadd cniccibl iblulm efifo eff1o basellem5
248 5 itgsub itgfsum logrn basellem8 circgrp
249 5 itgmulc2lem2 ellogrn dflog2 eff1o2 basellem9
263 5 dvlog2 efopn dvatan chebbnd2 ostth2
264 4 logtayl atancn efrlim ostth
265 4 logtaylsum logtayl2 atantayl dfef2
266 1 atantayl2
267 2 atantayl3 leibpi
268 2 leibpisum log2cnv
269 1 log2tlbnd
270 1 log2ub
271 1 birthday

Table 6: Twenty smaller layers of a graph decomposition applied to source nodes
ordered by layer number.

Besides the last six layers that mostly contain only one or two elements,
which is expected to happen since the network is still growing up every day, the
narrowest layer is the fifty-seventh which was already mentioned. Narrow layers
that appear at the beginning of the decomposition could indicate that they are
more important and relevant because it means that more nodes depend on them
to be proven. For any theorem to be proved, it must be reachable from axioms
(mathematically saying, the converse must occur, but as in our case arcs go from
axioms to theorems, it is easier to described it like so).

We remark upon the last layer, the two-hundred-seventy-first one, which
only has one element on it named as "birthday"12. This theorem refers to the
well-known birthday problem which asks: “What is the least number of people
required to assure that the probability that two or more of them have the same
birthday exceeds 1

2?” [16]. The fact that it appears in the last layer implies that
all the other layers are necessary for it to be proven, thus revealing its complexity
despite its intuitive formulation which one would not find difficult to understand.
λ is the length of the path that goes from some axiom up to birthday theorem.
Despite all layers being mandatory, it does not mean that all nodes on them are
in the same way necessary to prove birthday, but only the nodes which lie on
the paths that go through those λ− 1 layers starting from L0.
12 http://us.metamath.org/mpegif/birthday.html

Graph based analysis of mathematical knowledge structure on Metamath 25

8 Proof steps distribution

Another exploratory approach to metamath ecosystem regards how many steps
a theorem needs to be proved. Metamath has on its website the steps necessary
to prove theorems laid out in a human-friendly way. Theorem 2p2e413 is a good
example which shows that 2 + 2 = 4 needs, in the time being, 10 steps to be
proved. Those steps are the relevant ones in a human perspective of practicality.
For metamath software, though, those steps are longer because they include all
the necessary substitutions of definitions which are necessary to verify that all
well-formed formulas are correct. What metamath does is not explicitly display-
ing such steps to the layperson. “You can tell the program what level of detail of
the proof you want to look at. You may want to look at just the logical inference
steps that correspond to ordinary formal proof steps, or you may want to see
the fine-grained steps that prove that an expression is a term.” [3, p. 37].

Although our graph has been built to show how theorems relate to other
theorems on their proof, the graph in itself does not show how the theorems were
used to construct a proof because both the graph relationships are not ordered
and also some theorems may be used twice or more during a proof construction14.
In order to obtain all the number of steps, it was necessary to crawl all theorem
pages and manually extract that information from their HTML pages. It is only
necessary to find the first column of the last row from the HTML table.

One motivating reason to explore this aspect of metamath is that “The length
of a proof can, to a certain extent, be considered an objective measure of its
‘beauty,’ since shorter proofs are usually considered more elegant. In the set
theory database set.mm provided with Metamath, one goal was to make all
proofs as short as possible.” [3, p. 16]. Mathematicians like to be short and
concise.

Figure 15 shows a scatter plot of the proofs steps. The majority of them are
concentrated below the 100 steps mark. Theorems with a longer proof steps are
not as common, especially after the 300 steps mark. Table 7 lists the 10 longest
proofs in metamath. Both power-law and lognormal fits have been tried upon the
data, yet without a conclusive result. On figure 16 we try to fit the data into a
lognormal distribution, which resembles figure 8 from section 6, where a portion
of the data extrapolates the fit. A lognormal distribution is not conclusive for
the data. Figure 16 reveals that the most common are theorems with three, four,
or five steps to be proved, extrapolating the lognormal distribution fitting.

13 http://us.metamath.org/mpeuni/2p2e4.html
14 As one example, theorem halfpm6th uses theorem 3eqtr2i on its proof three times.

26 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig. 15: Scatter plot of theorems and the number of steps each theorem needs to
be proved.

Theorem Proof steps

2503lem2 706
lgsquadlem1 535
cantnflem1 515
itg2monolem1 514
vdwlem6 507
imasdsf1olem 489
logtayl 484
marypha1lem 479
4001lem1 476
pserdvlem2 467

Table 7: The 10 largest proofs of metamath

Graph based analysis of mathematical knowledge structure on Metamath 27

Fig. 16: PDF of proof steps approximated by a lognormal distribution, however
it is not a good approximation.

Fig. 17: CDF of proof steps approximated by a lognormal distribution.

28 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

9 Reachability of nodes

Another exploratory approach in order to understand the Metamath graph struc-
ture is to quantify how many nodes can be reached from a source node. Given
a node x, a DFS(x) yields a tree with root in x. All the paths in that tree
leading from x to all sink nodes show the dependencies of the nodes in the tree
in relation to x. The size of the tree, i.e, the number of nodes in the tree, shows
how many nodes, directly or not, depend on x to be proved. We found an inter-
esting linear relationship between the number of sinks and the size of the DFS
tree. Two scenarios are explored: a DFS starting from axioms only and a DFS
starting from all nodes. Of those two scenarios, in each one we calculate both
the number of sinks and the total number of nodes reached by each DFS.

9.1 Axioms to sinks and axioms to everyone

Fig. 18: Scatter plot for the counting of nodes that can be reached from a DFS
starting from axioms. The left figure shows the number of sinks reachable, mean-
while the right one shows the size of the DFS trees (quantity of reached nodes
in general). Every point on the scatter plot represents one axiom.

Graph based analysis of mathematical knowledge structure on Metamath 29

From figure 18 it is remarkable the similarity between the two images despite
the different scales on the y-axis. It suggests a linear relationship between the
data since one figure can be seen as a scaled version of the other by a constant
factor. To confirm it, a scatter plot is created where for each axiom, its sink
reach count value is used for the x-axis value and its general reach count value
(DFS tree size) as the y-axis value. Figure 19 confirms the suspicions, where each
point on the plot represents one axiom with its two reach values: reachable sinks
and reachable nodes. The points are fit by the equation y = 7.0112x + 43.847,
meaning that for each number of sinks that one axiom can reach, in average, it
can also reach seven times that number of nodes in general.

Fig. 19: Linear relationship between the quantity of sinks and general nodes that
can be reached by a DFS starting from a given axiom (source node).

9.2 Everyone to sinks and everyone to everyone

The same analysis is performed for the other scenario where the DFS is per-
formed for all nodes. Similar to figure 18, figure 20 suggests that the data has a
linear relationship since the plots are similar by some scale factor. In the same
manner, we confront these two information to seek a linear relationship between
the data.

30 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig. 20: Scatter plot for the counting of nodes that can be reached from a DFS
starting from every node. The left figure shows the number of sinks reachable,
meanwhile the right one shows the size of the DFS trees (quantity of reached
nodes in general). Every point on the scatter plot represents one node of the
graph.

Graph based analysis of mathematical knowledge structure on Metamath 31

Fig. 21: Linear relationship between the quantity of sinks and general nodes that
can be reached starting from a given node (axiom or theorem).

The data on figure 21 is fitted by the linear equation y = 6.9528x − 31.282,
having the same interpretation of figure 20: For each sink one node can reach,
in average, seven times that quantity of nodes in general can be reached as well.

9.3 Interpretation of data
It is difficult of say exactly what that linear relationship can mean. Consider
figure 22. Figures 22a and 22b are almost identical, but with one simple node
addition, the values for DFS-tree size and sinks do not convey significant in-
formation about their structure. Figure 22a has a ratio of 0.75 = 3

4 between
DFS-tree size and sinks, meanwhile figure 22b has a ratio of 0.2 = 1

5 . We imag-
ine that for each DFS-tree, a new theorem could appear in the network making
usage of the sinks, completely changing this proportion, even though the struc-
ture per se has not changed so much. Another example is between figures 22b
and 22c. Although having the same values for DFS-tree size and sinks, their
structures are completely different, thus the general relationship between these
two values carry little to no information about the general DFS-tree structure.
Nonetheless, is it quite surprising that some relationship between these values
exists.

32 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig. 22: Hypothetical graph trees. The difficulty to give a proper meaning for
the relationship between the DFS-tree size and the number of sinks of the tree
arises because totally different trees can have the same values, or small changes
in structure can create a significant difference between these two measurements.

Graph based analysis of mathematical knowledge structure on Metamath 33

10 Max Flow approach

Our final approach towards Metamath is to analyze its axioms trying to realize
which ones are the most relevant based on max flow.

A directed graph can be interpreted as a "flow network" where the rate at
which information moves through a communication network from a source to
a sink can be modeled [14]. Each arc indicates whither it is possible to move
throughout the network. The max flow problem computes the greatest rate at
which content can be delivered from a source node to a sink node. It is also a
classical combinatorial problem [17].
From [14] we have the definitions: A flow network G = (V,E) is a directed
graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.
If we have that (u, v) ∈ E, then it is required that (v, u) 6∈ E. If (u, v) 6∈ E,
then for convenience we define c(u, v) = 0. Also, self-loops are not allowed, thus
c(u, u) = 0. Two distinguishable nodes are: a source s and a sink t. A flow in
G is a real-valued function f : V × V → R that satisfy both constraints:

(a) Capacity constraint ∀u, v ∈ V, 0 ≤ f(u, v) ≤ c(u, v)
(b) Flow conservation ∀u ∈ V − s, t,

∑
v∈V f(v, u) =

∑
v∈V f(u, v)

Different from the reachability of nodes of section 9, which sees how many
sinks and nodes can be reached by a DFS starting from some other node, this
study tries to identify important axioms.

Using the herein described graph would lead us to a problem, though: a
node could have multiple flows flowing through it. Considering that each arc
initially has the same capacity, that is, c(e) = 1,∀e ∈ E, a node n could con-
tribute twice or thrice to a flow within the network since the flow within n
would be restricted only by min(δ+

n , δ
−
n). Our approach wants to address nodes

individually. To assure that each node will contribute only once to the flow, the
following technique has been used to give constraints to nodes rather than arcs:
every node n is halved into n′ and n′′. These two halves are connected such
that c(n′, n′′) = 1 and On′ = In′′ . All the original reaching arcs reach the first
half (In′ = In), whereas all the original leaving arcs depart from the second half
(On′′ = On). We call the arcs connecting the two halves internal arcs whose
form is ei = (n′, n′′). External arcs have the form ee = (u′′, v′). Before running
the max flow algorithm, we define the arcs constraints such that c(ei) = 1 and
c(ee) = 2; that is, external arcs have twice the capacity of internal arcs which
only contain an unitary capacity. Since all internal arcs have less flow capacity
than external ones, the flows will get constricted within nodes rather than on
external arcs. This graph modification technique is illustrated in figure 23.

The software HI-PR15 [17] has been used to calculate the max flow. HI-PR is
an efficient implementation of the so called push-relabel method for solving this
sort of problem.

15 http://www.avglab.com/andrew/soft.html

34 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig. 23: Graph technique to impose flow constrictions onto nodes.

The reason for that modification is that running the max flow problem on
that instance of graph shows how many distinct dependency paths exist between
nodes. Let x ∈ V be any node, axiom or theorem, and let DFS(x) be the
descendancy of that node throughout the graph. Given some node y ∈ DFS(x),
either x is a fundamental axiom in order to prove y, or x is a theorem which
needs to be proved before y can be proved. All directed paths between x and
y (x y) are contained within DFS(x). Each of these paths represents a
different dependency to prove the validity of y based on the validity of x. All
these paths are never disjoint because x and y always participate on them. If both
x and y are not taken into account, then it is possible for some of the directed
paths between them to never share any node in common, thus being disjoint. As
c(ei) < c(ee),∀e ∈ E, we ensure that the flow will always be throttled on some
node rather than on some other external arc. The number of disjoint paths of
x y is given by f(x, y). Each of these paths can be seen as one independent
way of explaining why x is essential for y. A unitary flow between nodes means
that only one path exists between them.

Graph based analysis of mathematical knowledge structure on Metamath 35

Considering the 65 source nodes (all the axioms nodes) and the 2529 sink
nodes, for each pair source-sink the max flow has been calculated. We have
found that the majority of them has only a unitary flow, as figure 24 shows. The
data neither follows a lognormal nor does it follow a power-law distribution.
Nonetheless, it is interesting to see how many unique paths exist for many of
the axiom-sink pairs.

2 4 6 8 10 12 14 16 18 20

Flow

0

0.5

1

1.5

2

2.5

3

3.5

F
lo

w
 c

o
u

n
t

×10
4 Histogram of flow between axiom-sink pairs

Fig. 24: The max flow has been calculated for all pairs of axiom-sink of Metamath
graph. The image shows the histogram of flows.

10.1 Classes of axioms

All max flow values for each axiom-sink pair have been summarized and we call
them as accumulated flow for a given axiom. Tables 9 and 10 resume the accu-
mulated flows for all axioms. Also, each axiom has been categorized according
to information found on metamath website. The categories are briefly explained
in table 8 if the reader is further interested to know more about them. Figure
25 gives a visual clue for the tabular data on tables 9 and 10.

36 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Category Explanation

?? There are two axioms that we were unsure on how to classify them: the axiom ax-cc

(Countable Choice) and the axiom ax-dc (Dependent Choice). We suspect that they
are classifiable under the ZFC category, albeit their total flow is insignificant when
compared to the other categories and then is does not affect the overall results.

Prop. calc. Axioms of propositional calculus. They are axioms of logic and a prerequisite for pred-
icate calculus [3, p. 56]. They are constructed with the connectives ¬(not), ∧(and),
∨ (or), → (implies), and ↔ (iff) by using certain closed rules of formation [18, p. 14],
meaning that any new formed expression by appropriate rules do not strengthen the
language.

Pred. calc. Axioms of predicate calculus. Other times called first-order logic, the predicate calculus
are a prerequisite for set theory [3, p. 56]. It is a more complex language than the
propositional calculus [18, p. 84] and introduces new logical symbols: = (equality) and
∃ (existential quantifier) [18, p. 86].

ZFC Zermelo-Fraenkel (ZF) is the set theory most commonly used amongst other versions
of set theory [3, p. 56]. Set theory is concerned with manipulation of objects and their
collections [3, p. 56] and “the key idea of set theory is the notion of a set as a single
abstract object apart from the elements of which it is composed” [18, p. 456]. Metamath
names it as Zermelo-Fraenkel set theory with Choice (ZFC) because of the axiom of
choice "ax-ac" which “is usually considered an extension of ZF set theory rather than
a proper part of it” [3, p. 63].

Derived Those axioms classified as "derived" can be derived from the axioms of predicate calcu-
lus classified as "Pred. calc.". Yet, they were left in metamath because other subsystems
can be derived and might be of interest for particular studies. a

Complex The axioms grouped in this category are based on the theorems postulated from the
ZFC set theory. After a theorem of complex number is proved, it is re-introduced as an
axiom within metamath. For example, after proving "axresscn"b, the axiom "ax-resscn"c

is introduced to be used like any other axiom. Metamath justifies this by stating: “This
lets us easily identify which axioms are needed for a particular complex number proof,
without the obfuscation of the set theory used to derive them”.

TG TG stands for the Tarski-Grothendieck Axiom. It is only one axiom named ax-grothd.
It could be considered as an extension of the ZFC set, yet Metamath prefers to put it
into its own category. More details about it can be found in e.

a http://us.metamath.org/mpegif/mmset.html#subsys
b http://us.metamath.org/mpegif/axresscn.html
c http://us.metamath.org/mpegif/ax-resscn.html
d http://us.metamath.org/mpegif/ax-groth.html
e http://us.metamath.org/mpegif/mmset.html#groth

Table 8: Description of the different categories of axioms within Metamath.

Graph based analysis of mathematical knowledge structure on Metamath 37

Axiom name Acc. flow Ax. category Axiom name Acc. flow Ax. category Axiom name Acc. flow Ax. category

ax-cc 25 ? ax-pre-mulgt0 844 complex ax-11 5603 pred. cal.
ax-dc 3 ? ax-cnex 808 complex ax-14 3227 pred. cal.
ax-1cn 4331 complex ax-pre-sup 389 complex ax-13 1689 pred. cal.
ax-icn 3355 complex ax-addf 214 complex ax-9v 16 pred. cal.
ax-1ne0 3119 complex ax-mulf 173 complex ax-12 3 pred. cal.
ax-i2m1 2802 complex ax-4 16644 derived ax-mp 32293 pro. cal.
ax-resscn 2795 complex ax-12o 8852 derived ax-1 21977 pro. cal.
ax-rrecex 2705 complex ax-16 5617 derived ax-2 9105 pro. cal.
ax-rnegex 2407 complex ax-10 4002 derived ax-3 3566 pro. cal.
ax-mulrcl 2268 complex ax-15 33 derived ax-groth 8 TG
ax-mulcl 2217 complex ax-10o 14 derived ax-sep 3714 ZFC
ax-cnre 2202 complex ax-6o 8 derived ax-ext 2117 ZFC
ax-addcl 2126 complex ax-11o 4 derived ax-nul 1856 ZFC
ax-mulcom 1791 complex ax-5o 4 derived ax-pr 1841 ZFC
ax-1rid 1362 complex ax-9o 4 derived ax-un 1669 ZFC
ax-pre-lttri 919 complex ax-17 19285 pred. cal. ax-pow 1449 ZFC
ax-pre-lttrn 916 complex ax-gen 14259 pred. cal. ax-rep 906 ZFC
ax-addrcl 910 complex ax-7 9111 pred. cal. ax-inf2 352 ZFC
ax-addass 899 complex ax-8 8956 pred. cal. ax-ac 54 ZFC
ax-distr 898 complex ax-6 7216 pred. cal. ax-reg 50 ZFC
ax-mulass 898 complex ax-5 6190 pred. cal. ax-inf 2 ZFC
ax-pre-ltadd 897 complex ax-9 5826 pred. cal.

Table 9: Summary for all flows leaving a source node and arriving to every sink
node sorted and grouped by axiom category

Axiom name Acc. flow Ax. category Axiom name Acc. flow Ax. category Axiom name Acc. flow Ax. category

ax-mp 32293 pro. cal. ax-resscn 2795 complex ax-pre-ltadd 897 complex
ax-1 21977 pro. cal. ax-rrecex 2705 complex ax-pre-mulgt0 844 complex
ax-17 19285 pred. cal. ax-rnegex 2407 complex ax-cnex 808 complex
ax-4 16644 derived ax-mulrcl 2268 complex ax-pre-sup 389 complex
ax-gen 14259 pred. cal. ax-mulcl 2217 complex ax-inf2 352 ZFC
ax-7 9111 pred. cal. ax-cnre 2202 complex ax-addf 214 complex
ax-2 9105 pro. cal. ax-addcl 2126 complex ax-mulf 173 complex
ax-8 8956 pred. cal. ax-ext 2117 ZFC ax-ac 54 ZFC
ax-12o 8852 derived ax-nul 1856 ZFC ax-reg 50 ZFC
ax-6 7216 pred. cal. ax-pr 1841 ZFC ax-15 33 derived
ax-5 6190 pred. cal. ax-mulcom 1791 complex ax-cc 25 ?
ax-9 5826 pred. cal. ax-13 1689 pred. cal. ax-9v 16 pred. cal.
ax-16 5617 derived ax-un 1669 ZFC ax-10o 14 derived
ax-11 5603 pred. cal. ax-pow 1449 ZFC ax-6o 8 derived
ax-1cn 4331 complex ax-1rid 1362 complex ax-groth 8 TG
ax-10 4002 derived ax-pre-lttri 919 complex ax-11o 4 derived
ax-sep 3714 ZFC ax-pre-lttrn 916 complex ax-5o 4 derived
ax-3 3566 pro. cal. ax-addrcl 910 complex ax-9o 4 derived
ax-icn 3355 complex ax-rep 906 ZFC ax-dc 3 ?
ax-14 3227 pred. cal. ax-addass 899 complex ax-12 3 pred. cal.
ax-1ne0 3119 complex ax-distr 898 complex ax-inf 2 ZFC
ax-i2m1 2802 complex ax-mulass 898 complex

Table 10: Summary for all flows leaving a source node and arriving to every sink
node sorted by accumulated flow

38 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Fig. 25: Summary for accumulated flow for each individual source node.

As the data shows, the axiom with the greatest reachability regarding accu-
mulated flow, or in other words, the one having the most quantity of disjoint
paths to sinks, is by far the axiom "ax-mp"16. It represents the assertion rule of
logic called Modus Ponens which permits to create new theorems from ancestor
ones. “This rule states that if the wff φ is an axiom or a theorem, and the wff
φ→ ψ is an axiom or a theorem, then the wff ψ is also a theorem.” [3]. It shows
the importance of propositional calculus for the network.

16 http://us.metamath.org/mpeuni/ax-mp.html

Graph based analysis of mathematical knowledge structure on Metamath 39

The second most relevant axiom found is "ax-1"17 which represents the first
axiom of the propositional calculus. Metamath has "ax-mp", "ax-1", "ax-2", and
"ax-3" to represent the axioms of propositional calculus18. Contrary to our ex-
pectations, the other two axioms of propositional calculus, "ax-2" and "ax-3",
were not so well ranked by this approach with "ax-2" being the seventh and
"ax-3" being the eighteenth ranked node.
In [18] we find that “from the point of view of its ability to express mathemat-
ical ideas, the propositional language has very limited power. [...] Nevertheless,
the structure of the propositional language has much in common with the much
more useful first-order languages”. Motivated by that, each accumulated flow
has been aggregated by its axiom category to better understand how each set of
axioms contribute to the network. The aggregated data is summarized in table
11 and visually represented in figure 26.

10.2 Interpretations and discussion

Based on the results of max flow from axioms to sink nodes in the metamath
graph, and after categorizing and aggregating the flows, we see that the axioms
for predicate and propositional calculus play, respectively, the major role for all
the derived theorems of the network. That seems consistent with the literature
about mathematics.

As the set of axioms for complex number has been left on their own category
on Metamath, we see how they also have a significant importance for the overall
network. Just to remind the reader, they are postulated based of the ZFC set of
axioms. They were introduced on Metamath on their own after being proved from
the ZFC set so as to have a better separation of concerns. Thus, the "complex"
category can be seen as an extension of the "ZFC" set.

As explained on table 8, the "derived" category can be seen as an extension of
the "Predicated calculus" category. Considering that, we once again group the
aggregated values to give a final vision about Metamath groups of axioms. This is
illustrated on table 12 and on figure 27. It is possible to see that the Predicated
calculus dominates the network, followed by the set of Propositional calculus
and ZFC which have almost the same flow quantity.

The axioms ax-cc, ax-dc, and ax-groth from the two remaining axiom sets
seem to have a very specific and limited purpose on the network if seen on their
own category, since their flow values are negligible. We suspect, though, that
these three axioms could be grouped into the ZFC category. Our mathematical
knowledge limits us to make a judgment about it.

17 http://us.metamath.org/mpeuni/ax-1.html
18 http://us.metamath.org/mpeuni/mmset.html#scaxioms

40 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Category Aggregated flow

Predicated calculus 81381
Propositional calculus 66941
Complex numbers 42245
Derived 35182
ZFC 14010
? 28
TG 8

Table 11: Aggregated accumulated flows for each axiom set category

Category Aggregated flow

Predicated calculus + Derived 116563
Propositional calculus 66941
ZFC + Complex numbers 56255
? 28
TG 8

Table 12: Grouped aggregated accumulated flows for each axiom set category

Graph based analysis of mathematical knowledge structure on Metamath 41

Pre
dic

at
ed

 c
al

cu
lu

s

Pro
posi

tio
nal

 c
al

cu
lu

s

C
om

ple
x

num
ber

s

D
er

iv
ed

ZFC ?
TG

0

2

4

6

8

10
×104

Fig. 26: Aggregated accumulated flows for each axiom set category.

Predicated calculus + D
eriv

ed

Pro
positio

nal c
alculus

Complex numbers + ZFC ? TG

0

2

4

6

8

10

12
×104

Fig. 27: Grouped aggregated accumulated flows for each axiom set category.

42 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

Conclusions

Mathematical proof assisted by software is something possible and feasible. Tools
such as Metamath help out mathematicians and offer a standard way of querying
and parsing information which benefit analysis such as the ones performed on
this work. We have described the basics of Metamath, its file structure, and we
have given a glimpse about its intricacies while analyzing it, so the new and not
yet acquainted reader may grasp it easily.

As the mathematical knowledge does not grow randomly, but rather is driven
by human intelligence, we have shown that some structure underlies the manner
how theorems and axioms relate. We were quite surprised by the findings because
theorems have a purpose to exist, and since theorems are not created at random,
many natural restrictions are imposed for the connections of new theorems on
the network. Only because a theorem is highly used it does not mean that
necessarily all new theorems are likely to rely upon it. How likely is a highly
connected theorem to be used by a new theorem, only because of its popularity?
An individual analysis of theorems would be required to answer that question.

We have described how to read and interpret each of the possible degree
measures; outdegrees act in a passive way, indegrees act in a more dynamic
manner, and also that the total degree of nodes do not tell much about a node.

While studying the degree distribution, we have shown that the network has
a tendency to be structured as a scale-free network, yet with some remarks. We
have concluded that the total degree of nodes (δ) follows a lognormal distribu-
tion with high accuracy; also, that the indegree of nodes (δ+) tends to follow
a lognormal distribution yet without conclusive evidence; and finally, that the
outdegree of the network (δ−) seems to follow a power-law distribution. As it
has been shown before, networks may evolve from a lognormal distribution to a
power-law distribution through well-known mechanisms [12], thus the scale of a
network is not a fixed and immutable structure but rather malleable as it evolves
throughout the time. As we have not found similar research about the structure
of the mathematical knowledge, we are not sure to affirm which mechanisms of
network formation govern Metamath network. Another factor which makes it
difficult to give a verdict about the distributions is the size of the dataset which
contains only 17538 nodes. Many other degree studies have been performed on
voluminous sets of data.

While decomposing the graph by sources, we have shown that Metamath
has some high dependency upon three theorems: sb3, sb4, and sb56. Also, we
have discovered that the birthday theorem was the last theorem found on that
decomposition, meaning that it is the most dependent theorem of the network
for the time being.

During the analysis of the proof steps of theorems, we have not found any
conclusive evidence to affirm that it fits into some distribution, yet it may evolve
to some more conclusive shape as the network evolves with new theorems.

Surprisingly enough, we have found a relationship between the size of a DFS-
tree and its number of leaves. Starting a DFS from anywhere on the graph leads
to an average number of nodes seven times bigger than the number of leaves that

Graph based analysis of mathematical knowledge structure on Metamath 43

the DFS-tree has. However, these values do not convey significant information
or details about any particular graph structure as far as we have seen.

Lastly, we have studied the axioms through a max flow approach and we
have also presented a clever trick to add constraints to nodes rather than on
arcs. Also, we have described how to calculate disjoint paths between sources
and sinks by using appropriate flow capacity on arcs. The results show that the
sets of axioms for predicated calculus endow most of the network. The axioms
of propositional calculus, although being a stronger language to describe mathe-
matical knowledge, were ranked having nearly half the influence than the set of
Predicated calculus, considering the influence based on disjoint paths between
sinks and nodes. The ZFC set has been raked almost with the same relevance
than the Propositional calculus. For the remaining three axioms, we suspect that
their values could be grouped into the ZFC set. Since we are studying Metamath
from a computer science perspective, we were not concerned by that details.

In this work, we have analyzed an area which is not so commonly analyzed
with graphs compared to other natural and human phenomena. We hope to shed
some light and insights on mathematical knowledge analysis.

44 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

References

1. Cléuzio Fonseca Filho. História da computação: O Caminho do Pensamento e da

Tecnologia [History of computing: The path of thought and technology]. EDIPU-
CRS, 2007.

2. Rogério Santos Mol. Introdução à história da matemática [introduction to the
history of mathematics]. Belo Horizonte: CAED-UFMG, 2013.

3. Norman Megill. Metamath: A computer language for pure mathematics. 1997.
4. I. Robinson, J. Webber, J. Webber, and E. Eifrem. Graph Databases. O'Reilly,

2013.
5. Flavio B Gonzaga, Valmir C Barbosa, and Geraldo B Xexéo. The network structure

of mathematical knowledge according to the wikipedia, mathworld, and dlmf online
libraries. Network Science, 2(03):367–386, 2014.

6. Réka Albert, István Albert, and Gary L Nakarado. Structural vulnerability of the
north american power grid. Physical review E, 69(2):025103, 2004.

7. Edward T Lu and Russell J Hamilton. Avalanches and the distribution of solar
flares. The astrophysical journal, 380:L89–L92, 1991.

8. Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos
Faloutsos, and Jure Leskove. Mobile call graphs: beyond power-law and lognormal
distributions. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 596–604. ACM, 2008.
9. Lada A Adamic and Bernardo A Huberman. Zipf's law and the internet. Glotto-

metrics, 3(1):143–150, 2002.
10. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-

tionships of the internet topology. In ACM SIGCOMM computer communication

review, volume 29, pages 251–262. ACM, 1999.
11. Albert-László Barabási. The architecture of complexity. IEEE control systems,

27(4):33–42, 2007.
12. Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary

physics, 46(5):323–351, 2005.
13. Michael Mitzenmacher. A brief history of generative models for power law and

lognormal distributions. Internet mathematics, 1(2):226–251, 2004.
14. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. third, 2009.
15. Valmir C Barbosa and Eli Gafni. Concurrency in heavily loaded neighborhood-

constrained systems. ACM Transactions on Programming Languages and Systems

(TOPLAS), 11(4):562–584, 1989.
16. Frederick Mosteller. Understanding the birthday problem. In Selected Papers of

Frederick Mosteller, pages 349–353. Springer, 2006.
17. Boris V Cherkassky and Andrew V Goldberg. On implementing push-relabel

method for the maximum flow problem. In International Conference on Integer

Programming and Combinatorial Optimization, pages 157–171. Springer, 1995.
18. P Hinman. Fundamentals of mathematical logic. 2005. AK Peters.

Graph based analysis of mathematical proof structure on Metamath 45

A Appendices

A.1 JFlex lexical analyzer file

1 %{

2 private String string_found = "";

3 private StringBuilder string_builder = new StringBuilder();

4 private Symbol symbol(int type) {

5 return new Symbol(type, yyline, yycolumn);

6 }

7 private Symbol symbol(int type, Object value) {

8 return new Symbol(type, yyline, yycolumn, value);

9 }

10 %}

11

12 /* Macro Declarations */

13

14 LineTerminator = \r|\n|\r\n

15 InputCharacter = [^\r\n]

16 WhiteSpace = {LineTerminator} | [\t\f]

17

18 /* In order to avoid REGEX problems, all special characters are escaped */

19 /* We have only removed the ’$’ character from here to avoid issues with

20 metamath reserved tokens */

21 SpecialChars =

22 \‘|\~|\!|\@|\#|\%|\^|\&|*|\(|\)|\-|_|\=|\+|\[|\]|\{|\}|\;|\:|\’|\"|\,|\.|\<|\>|\/|\?|\\|\|

23

24 PrintableChars = ([a-zA-Z0-9]|{SpecialChars})

25

26 /* A label token consists of any combination of letters, digits,

27 and the characters hyphen, underscore, and period */

28 Label = [a-zA-Z0-9\-_\.]+

29

30 /* A math symbol token may consist of any combination of the 93 printable

31 standard ascii characters other than ’$’. */

32 /* See metamath book p. 93 for more details. */

33 MathSymbol = {PrintableChars}+

34

35 %state STRING, PROOF, COMPACT_PROOF, COMMENT, INCLUDE

36

37 %%

38 /* ------------------------Lexical Rules Section---------------------- */

39

40 /*

41 This section contains regular expressions and actions, i.e. Java

42 code, that will be executed when the scanner matches the associated

43 regular expression. */

44 /* YYINITIAL is the state at which the lexer begins scanning. */

45

46 <YYINITIAL> {

47

48 /* Blocks syntax */

49 "${" { return symbol(sym.SCOPE_START); }

50 "$}" { return symbol(sym.SCOPE_END); }

51 "$(" { yybegin(COMMENT); }

52 "$[" { yybegin(INCLUDE); }

53

54 /* non-labeled declarations */

55 "$c" { return symbol(sym.CONSTANT_STMT); }

56 "$v" { return symbol(sym.VARIABLE_STMT); }

57 "$d" { return symbol(sym.DISJUNCT_VARIABLE_STMT); }

58

59 /* labeled declarations */

60 "$f" { return symbol(sym.VARIABLE_TYPE_HYPOTHESIS_STMT); }

61 "$e" { return symbol(sym.LOGICAL_HYPOTHESIS_STMT); }

62 "$a" { return symbol(sym.AXIOMATIC_ASSERTION_STMT); }

46 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

63 "$p" { return symbol(sym.PROVABLE_ASSERTION_STMT); }

64 "$=" { yybegin(PROOF); return symbol(sym.PROOF_STMT); }

65 "$." { return symbol(sym.STMT_END); }

66

67 /* Since labels are a subset of math symbols (in terms of regex), we need

68 to change to a state where we will look ahead and see if there are any

69 $p, $a, $e, or $f symbol. That will tell us when we have found a LABEL

70 or a MATH_SYMB */

71 {MathSymbol} { string_found = yytext(); yybegin(STRING); }

72

73 /* Don’t do anything if whitespace is found */

74 {WhiteSpace} { /* just skip what was found, do nothing */ }

75 }

76

77 /* The STRING state here means that either a label or math symbol was found */

78

79 <STRING> {

80

81 {WhiteSpace} { /* just skip what was found, do nothing */ }

82

83 \$(e|f|a|p) { yypushback(2); yybegin(YYINITIAL); return symbol(sym.LABEL, string_found); }

84

85 . { yypushback(1); yybegin(YYINITIAL); return symbol(sym.MATH_SYMB, string_found); }

86 }

87

88 /* The PROOF section refers to all code after a $= token */

89

90 <PROOF> {

91

92 {WhiteSpace} { /* just skip what was found, do nothing */ }

93

94 /* Round brackets aren’t present when the proof isn’t in compact form */

95 "(" { return symbol(sym.LPARENT); }

96 ")" { yybegin(COMPACT_PROOF); string_builder.setLength(0); return symbol(sym.RPARENT); }

97

98 {Label} { return symbol(sym.LABEL,yytext()); }

99

100 "$." { yybegin(YYINITIAL); return symbol(sym.STMT_END); }

101

102 /* Sub-state */

103 <COMPACT_PROOF> {

104 {WhiteSpace} { /* just skip what was found, do nothing */ }

105 {Label} { string_builder.append(yytext()); }

106 "$." { yybegin(PROOF); yypushback(2); return symbol(sym.COMPACT_PROOF, string_builder.toString()); }

107 }

108 }

109

110 <COMMENT> {

111 {WhiteSpace} { /* just skip what was found, do nothing */ }

112 "$)" { yybegin(YYINITIAL); }

113 . { /* Do nothing */ }

114 }

115

116 <INCLUDE> {

117 {WhiteSpace} { /* just skip what was found, do nothing */ }

118 "$]" { yybegin(YYINITIAL); return symbol(sym.INCLUDE_END); }

119 . { /* Do nothing */ }

120 }

121

122 /* No token was found for the input so through an error. Print out an

123 Illegal character message with the illegal character that was found. */

124 [^] { throw new Error("Illegal character <"+yytext()+">"); }

Graph based analysis of mathematical proof structure on Metamath 47

A.2 CUP syntactical analyzer file

1

2 /* Terminals (tokens returned by the scanner). */

3

4 terminal LPARENT, RPARENT;

5 terminal SCOPE_START, SCOPE_END;

6 terminal INCLUDE_START, INCLUDE_END;

7 terminal CONSTANT_STMT, VARIABLE_STMT;

8 terminal DISJUNCT_VARIABLE_STMT, VARIABLE_TYPE_HYPOTHESIS_STMT;

9 terminal LOGICAL_HYPOTHESIS_STMT, AXIOMATIC_ASSERTION_STMT;

10 terminal PROVABLE_ASSERTION_STMT, PROOF_STMT, COMPACT_PROOF,STMT_END;

11 terminal String LABEL, MATH_SYMB;

12

13 /* Non terminals */

14

15 non terminal initial_symbol, empty;

16 non terminal math_symb_list, label_list;

17 non terminal const_declaration, var_declaration, disjoint_var_declaration;

18 non terminal var_type_hypothesis_declaration, logical_hypothesis_declaration;

19 non terminal axiomatic_declaration, theorem_declaration, proof_declaration, proof_labels;

20 non terminal include_section, scope_section;

21

22 start with initial_symbol;

23

24 /* The grammar */

25

26 initial_symbol ::=

27 const_declaration initial_symbol

28 | var_declaration initial_symbol

29 | disjoint_var_declaration initial_symbol

30 | var_type_hypothesis_declaration initial_symbol

31 | logical_hypothesis_declaration initial_symbol

32 | axiomatic_declaration initial_symbol

33 | theorem_declaration initial_symbol

34 | include_section initial_symbol

35 | scope_section initial_symbol

36 | empty

37 ;

38

39 empty ::=

40 ;

41

42 math_symb_list ::=

43 math_symb_list MATH_SYMB:m

44 |

45 MATH_SYMB:m

46 ;

47

48 const_declaration ::=

49 CONSTANT_STMT

50 math_symb_list STMT_END

51 ;

52

53 var_declaration ::=

54 VARIABLE_STMT

55 math_symb_list STMT_END

56 ;

57

58 disjoint_var_declaration ::=

59 DISJUNCT_VARIABLE_STMT

60 MATH_SYMB:m

61 math_symb_list STMT_END

62 ;

63

64

65

48 Reuel R. Ribeiro, Valmir C. Barbosa, and Flavio B. Gonzaga

66

67

68 /* See Metamath book p. 105 for references */

69 var_type_hypothesis_declaration ::= /* $f */

70 LABEL:l

71 VARIABLE_TYPE_HYPOTHESIS_STMT

72 MATH_SYMB:constant MATH_SYMB:variable

73 STMT_END

74 ;

75

76 logical_hypothesis_declaration ::= /* $e */

77 LABEL:l

78 LOGICAL_HYPOTHESIS_STMT

79 MATH_SYMB:constant

80 math_symb_list

81 STMT_END

82 ;

83

84 axiomatic_declaration ::= /* $a */

85 LABEL:l

86 AXIOMATIC_ASSERTION_STMT /* $a */

87 MATH_SYMB:m

88 math_symb_list

89 STMT_END

90 ;

91

92 theorem_declaration ::=

93 LABEL:l

94 PROVABLE_ASSERTION_STMT /* $p */

95 MATH_SYMB:m

96 math_symb_list

97 proof_declaration

98 STMT_END

99 ;

100 proof_declaration ::=

101 PROOF_STMT /* $= */

102 label_list

103 | PROOF_STMT /* $= */

104 LPARENT proof_labels RPARENT COMPACT_PROOF:p

105 ;

106 proof_labels ::=

107 label_list

108 | empty

109 ;

110

111 label_list ::=

112 label_list LABEL:l

113 | LABEL:l

114 ;

115

116

117 include_section ::=

118 INCLUDE_START

119 INCLUDE_END

120 ;

121

122 scope_section ::=

123 SCOPE_START

124 initial_symbol

125 SCOPE_END

126 ;

127

