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ABSTRACT

Mathematical information retrieval is a relatively new area,
so the first search tools capable of retrieving mathematical
formulas began to appear only a few years ago. The proposals
made public so far mostly implement searches on internal uni-
versity databases, small sets of scientific papers, or Wikipedia
in English. As such, only modest computing power is required.
In this context, SearchOnMath has emerged as a pioneering
tool in that it indexes several different databases and is com-
patible with several mathematical representation languages.
Given the significantly greater number of formulas it handles,
a distributed system becomes necessary to support it. The
present study is based on the Microsoft BizSpark program
and has aimed, for 38 different distributed-system scenarios,
to pinpoint the one affording the best response times when
searching the SearchOnMath databases for a collection of
120 formulas.
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1 INTRODUCTION

Unlike textual information retrieval, for which there exist
several techniques already widely studied and disseminated,
as well as tools capable of tackling the required tasks while
performing quite satisfactorily, the area of Mathematical
Information Retrieval (MIR) is still in a much less developed
stage. In fact, as summarized in Table 1, only in the past
few years have techniques for MIR been introduced, usually
focusing on very specific problems related to Wikipedia’s
mathematical pages and indexing around 500 000 formulas.

As with most niche-oriented forms of information retrieval,
MIR has to contend with problems that are specific to the
search for mathematical formulas. One of them is the large
overhead caused by the various possible uses for the same sym-
bol [10]. These possibilities constitute an important source
of ambiguity in MIR, since completely different formulas can
be written using essentially the same symbols [3]. Another
problem is the fact that usually the formulas available on the

Table 1: Existing Tools for MIR

Reference Search Domain No. of Formulas

[4] CONNEXIONS project, 77 000
functions.wolfram 87 000

[1] Coq proof assistant 40 000 theorems
[7] Database created 829

by authors
[9] 50 LATEX documents 24 479
[3] en.wikipedia.org, 611 210

DLMF 252 148
[2] en.wikipedia.org 495 958
[5] en.wikipedia.org, 521 782

CiteSeerX 9 482
[11] en.wikipedia.org1 482 364
[13] en.wikipedia.org2 387 947

1Used MREC (Math REtrieval Collection), a collection with approxi-
mately 324 000 academic publications, during the develompment phase.
2Includes some information about index size and response time when
applied to an arXiv base with about 60 million formulas.
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Web are represented in languages originally conceived with
little or no concern for a formula’s semantic aspects.

The search engine SearchOnMath3 is one of the most recent
arrivals to the field of MIR. Its first version was released in
2013, and by the end of 2015 it had become a start-up. It soon
joined the Microsoft BizSpark program, with a modest but
very effective monthly allowance, distributed among five email
accounts, to hire computers (at most 20 processing cores).
Until 2016, SearchOnMath was able to perform the search
for formulas on four databases, namely, the English version
of Wikipedia, Wolfram MathWorld, DLMF, and PlanetMath.
In such a scenario, only one computer with the so-called A3
Basic configuration of the Microsoft Azure environment was
sufficient. This configuration includes a four-core processor,
7 GiB of RAM, and a 120-GB HD.

In the course of 2016, as SearchOnMath began prepara-
tions for expansion, a distributed system was developed and
tested on Microsoft Azure with the goal of assessing each
of the 38 possible configurations afforded by our constraints
within BizSpark. This investigation was based on a set of 120
preselected formulas that were to be worked on by SearchOn-
Math within a domain of almost 2 million formulas, and
aimed at discovering which of the candidate configurations
was capable of delivering the best response times. Our results
and conclusions are presented in this paper.

Our study contributes to the field of MIR in two different
ways. The first of them is more of a confirmation of the
path we have selected for SearchOnMath. It is therefore of
an immediate nature, with short-term applicability by other
entrepreneurs. As companies that develop search engines for
mathematical formulas begin to appear, mainly as start-ups,
it may be reassuring to know that the Microsoft BizSpark
program is a very viable opportunity, since it already sup-
ports more than 100 000 start-ups worldwide and continues
to expand. In this regard, information about the infrastruc-
ture and operation of SearchOnMath on Azure can be more
widely useful. The second contribution is the performance
assessment we carried out itself, including the set of 120
formulas that we put together in order to measure response
time, but which can be used for other purposes as well.

2 METHODOLOGY

For the present study we considered five databases, all ob-
tained throughout the year 2016. Each of these databases
is identified in Table 2, along with the respective number
of mathematical formulas extracted from it, disregarding
repetitions.

After the bases were obtained individually, a final database
was constructed as the union of all five, still disregarding rep-
etitions. The resulting database contains 1 905 358 indexed
formulas. SearchOnMath was then configured as in Figure 1.

3http://searchonmath.com/
4http://en.wikipedia.org/
5http://mathworld.wolfram.com/
6http://dlmf.nist.gov/
7http://planetmath.org/
8http://socratic.org/

Table 2: Database List

Database Number of Formulas

Wikipedia, English version4 590 417
Wolfram MathWorld5 79 677

DLMF6 33 219
PlanetMath7 159 944

Socratic8 1 063 754

For operation, a client submits a formula to be searched
to the master machine, which runs the engine’s front-end.
After reception by the master, the formula is sent to the
slave machines, which do all the necessary processing to find
out which formulas in the database are similar to the query
formula. The database is distributed across the slaves so
that, for example, if we have 10 of them, then each one has
approximately 10% of the formulas. After processing, each
slave returns a list containing the most similar formulas it
found. The master receives all the lists and then performs
the final ordering of the results, returning the consolidated
list to the client.

All machines run Linux, and in all cases we configured
the master machine with four cores, 7 GiB of RAM, and a
120-GB HD (this configuration is called A3 Basic in Azure).
The number of slave machines was obtained based on the re-
maining allowance resources. We first estimated the amount
of our monthly allowance that would correspond to an hour,
and then took into account the fact that Azure prices the
allocation of machines differently, depending on geographic
location. We always chose the region that offered the lowest
possible cost in the United States, considering as reference
value the one quoted at the date of the beginning of the exper-
iments (Nov. 23, 2016). In these circumstances, discounting
the A3 Basic cost per hour allowed us the allocation of up
to 16 cores to work as slave machines, arranged according to
38 (out of 65) different configurations available in the Azure
environment.
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Figure 1: The SearchOnMath architecture.
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Table 3: Slave-Machine Configurations and Azure
Groups

Configuration Cores RAM HD Machines

A0 Basic 1 0.75 GiB 20 GB 16
A1 Basic 1 1.75 GiB 40 GB 16
A2 Basic 2 3.50 GiB 60 GB 8
A3 Basic 4 7.00 GiB 120 GB 4
A4 Basic 8 14.00 GiB 240 GB 2

A1 v2 1 2.00 GiB 10 GB 16
A2 v2 2 4.00 GiB 20 GB 8
A4 v2 4 8.00 GiB 40 GB 4
A8 v2 8 16.00 GiB 80 GB 2

A2m v2 2 16.00 GiB 20 GB 8
A4m v2 4 32.00 GiB 40 GB 3
A8m v2 8 64.00 GiB 80 GB 1

D1 v1 1 3.50 GiB 50 GB 12
D2 v1 2 7.00 GiB 100 GB 6
D3 v1 4 14.00 GiB 200 GB 3
D4 v1 8 28.00 GiB 400 GB 1

D1 v2∗ 1 3.50 GiB 50 GB 14
D2 v2∗ 2 7.00 GiB 100 GB 7
D3 v2∗ 4 14.00 GiB 200 GB 3
D4 v2∗ 8 28.00 GiB 400 GB 1

A0 Standard 1 0.75 GiB 20 GB 16
A1 Standard 1 1.75 GiB 70 GB 16
A2 Standard 2 3.50 GiB 135 GB 8
A3 Standard 4 7.00 GiB 285 GB 4
A4 Standard 8 14.00 GiB 605 GB 2
A5 Standard 2 14.00 GiB 135 GB 3
A6 Standard 4 28.00 GiB 285 GB 1

F1∗ 1 2.00 GiB 16 GB 16
F2∗ 2 4.00 GiB 32 GB 8
F4∗ 4 8.00 GiB 64 GB 4
F8∗ 8 16.00 GiB 128 GB 2

D11 v1 2 14.00 GiB 100 GB 4
D12 v1 4 28.00 GiB 200 GB 2
D13 v1 8 56.00 GiB 400 GB 1

D11 v2∗ 2 14.00 GiB 100 GB 5
D12 v2∗ 4 28.00 GiB 200 GB 2
D13 v2∗ 8 56.00 GiB 400 GB 1

G1∗ 2 28.00 GiB 384 GB 1

Table 3 shows all the configurations analyzed for the slave
machines. The Configuration column indicates the name of
the configuration, its resources detailed in the Cores, RAM,
and HD columns. The Machines column indicates the number
of machines with this configuration that could be instantiated
as slaves. This number is equal to either bh/pc or b16/cc,
whichever is smaller, where h is the available budget per hour,
p is the cost per hour of instantiating one machine, and c is
the number of cores one machine has.

Azure groups similar machine configurations [6]. In Ta-
ble 3, a white backdrop indicates machines classified as “Gen-
eral Purpose—Balanced CPU to memory ratio.” A light-
gray backdrop indicates “Compute Optimized—High CPU

to memory ratio” machines. Those on a dark-gray backdrop,
finally, are “Memory Optimized—High memory to core ra-
tio” machines. Configurations with an asterisk (*) by their
denominations comprise machines that Azure offers with or
without an SSD. Thus, for these machines, both possibilities
were evaluated.

3 RESULTS

All tests were executed on a set of 120 formulas9 from [3, 7,
8, 11, 12].

The overall testing scheme for each line of Table 3 (each
configuration of the slave machines in Figure 1) was the
following. The first of the 120 formulas was submitted for
search to the master machine (of type A3 Basic), which then
passed it on to the slave machines (of types dependent upon
the configuration in question, as per Table 3) and awaited
their results. Having received these, the master machine put
together and sorted the final list of results and proceeded to
submitting the second formula in the set. This was repeated
until all 120 formulas were searched.

This full search pass over all 120 formulas was repeated
41 times for each of the configurations of Table 3. The
time spent on each pass was recorded and, at the end, the
average time of all 41 executions was found and its confidence
interval estimated (at the 99% level). We note that each time
measurement disregards every communication delay between
the client and the master (cf. Figure 1). As a result, all time
figures we report are search-related, referring to processing
time at the master or at a slave, or to internal network delays
of the distributed system. We give results in Figures 2 and 3,
respectively for the machines of Azure type General Purpose
and for those of the other two types (Compute Optimized
and Memory Optimized).

Each plot in these figures refers to a group of slave-machine
configurations, as implied by the horizontal rules in Table 3,
and positions each of the group’s configurations on the ab-
scissa axis in the order given in the table. So, for example,
configurations A0–4 Basic are grouped together, with A0 Ba-
sic appearing leftmost in Figure 2, followed by A1 Basic, and
so on. It is also worth noting that the confidence intervals are
often negligible and therefore hard to discern in the figures.

As it turns out, the best scenario for the SearchOnMath
system is the slave-machine configuration F1 with SSD, which
comprises 16 identical single-core machines, each with 2 GiB
of RAM and a 16-GB SSD. With this configuration, the time
needed to search for the 120 formulas was about 120 seconds
on average (roughly 1 second per formula), with a confidence
interval of approximately ±0.86 seconds.

Notwithstanding this, we note that in general the SSD-
based configurations did not result in a large difference when
compared to their HD-based counterparts. This was expected,
given that SearchOnMath carries the formulas in memory
while running, thus considerably reducing the need for access
to secondary storage. Two exceptions to this note occurred
for configurations F1 and F4, in which case time differences

9http://searchonmath.com/formulas, accessed: Feb. 18, 2017.

http://searchonmath.com/formulas


SIGIR’2017, August 2017, Tokyo, Japan R. Oliveira et al.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  1  2  3  4  5  6  7  8

T
im

e
 (

s
)

Position in configuration group

A0-4 Basic
A1, 2, 4, 8; A2m, 4m, 8m v2

D1-4 v1
D1-4 v2

D1-4 v2 with SSD
A0-6 Standard

Figure 2: Time spent on General Purpose machines.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  1  2  3  4  5  6  7  8

T
im

e
 (

s
)

Position in configuration group

F1, 2, 4, 8
F1, 2, 4, 8 with SSD

D11-13 v1
D11-13 v2

D11-13 v2 with SSD
G1

G1 with SSD

Figure 3: Time spent on Compute Optimized and
Memory Optimized machines.

were indeed significant. Nevertheless, we are unable to explain
such differences on grounds of the SearchOnMath algorithms,
and must therefore speculate that they have to do with factors
internal to Azure.

4 CONCLUSIONS

Carrying out the experiments described in this paper has
allowed us to observe the functioning of SearchOnMath on a
variety of configurations of the Microsoft Azure cloud environ-
ment. We experimented with all configurations compatible
with our BizSpark status and, within these limits, identified
a configuration capable of supporting 1-second searches for
120 (out of just over 1 900 000) formulas. At the relatively
modest cost currently afforded us by the Microsoft BizSpark
program, these experiments will help us envisage plans to
scale up operations. We note, finally, that the 120 formu-
las selected for the experiments will remain available from

SearchOnMath for possible future use in further comparative
studies.
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