
Study and analysis of deep learning techniques for
solving financial machine learning problems

Wendell João Castro de Ávila
Dep. de Ciência da Computação
Universidade Federal de Alfenas

Alfenas, Brazil
wendell.avila@sou.unifal-mg.edu.br

Ricardo Menezes Salgado
Dep. de Ciência da Computação
Universidade Federal de Alfenas

Alfenas, Brazil
ricardo.salgado@unifal-mg.edu.br

Abstract—This work documents the process and presents the
techniques employed to develop deep learning models using a
dataset containing over 2 million financial data observations.
These models were developed using an incremental approach
consisting of starting with simple models with default parameters
and later isolating and improving their parts one step at a time.
In each step of this process, various techniques with similar
goals were compared, with the best performing technique being
integrated into an existing model. With this approach, we aim
to improve the performance of our models gradually at each
step, with a constant focus on reducing the effects of overfitting.
Additionally, this work can serve as a guide to help researchers
working on similar problems. By suggesting resources that can
be used and steps that can be followed in similar scenarios, this
work can help narrow down the search for efficient financial
machine learning models.

Index Terms—Deep learning, finance, financial markets, ma-
chine learning.

I. INTRODUCTION

This work aims to introduce and evaluate deep learning
techniques that can be used to solve financial machine learning
problems. For this purpose, a dataset provided by the financial
machine learning competition Jane Street Market Prediction
(JSMP) [1] was used.

This competition proposes the creation of machine learning
models that can decide whether or not financial transactions
should be performed, aiming for profit.

To do so, JSMP provided financial data consisting of a
tabular dataset containing over 2 million data observations
collected over the course of 500 days. In it, each observation
represents a buying or selling opportunity for which a machine
learning model must decide if it is worthwhile to perform it,
considering the monetary return it can achieve.

This dataset was chosen for working with deep learning for
two reasons:

1) We believe it is compatible with deep learning, given its
large number of observations.

2) This dataset contains a set of 130 anonymized features:
columns with generic names, with no information ex-
plaining what each feature and its values represent.

Anonymized features can make it difficult to use feature
engineering and feature selection, techniques widely used in
machine learning. Deep learning is capable of automatically

identifying the best features that help predict desired results
[2], not relying on feature selection and having an advantage
over other machine learning algorithms.

To develop these models, we used an incremental approach
consisting of starting with a simple model and isolating and
improving its parts, allowing us to compare the performance
of different approaches with similar goals and select the best
to integrate an existing model.

This work also has focus on diminishing the effects of
overfitting. When not properly accounted for, it often leads
to failure in finance, producing false discoveries and promised
outcomes that cannot be delivered [3, p. 11–12].

Following this approach, we aim to gradually improve the
performance of our models, achieving better results after each
step of including techniques in the models.

Other than documenting the findings in this specific appli-
cation, this work can also help researchers working on similar
financial machine learning problems by suggesting resources
that can be used and steps that can be followed in similar
scenarios, narrowing down the search for efficient models.

The content of this work is structured as follows: in section
II, the theoretical framework regarding the techniques used is
presented. Section III explores the dataset used in more detail.
Section IV details the methodology used to develop and eval-
uate deep learning models. In section V, the results achieved
using this methodology are presented and compared. Finally,
section VI concludes this work with the final considerations.

II. THEORETICAL FRAMEWORK

A. Machine Learning

A machine learning system is trained rather than explicitly
programmed. It consists of using algorithmic solutions to
find statistical relationships between a set of input data and
its respective output data, approximating a function that can
determine an output from a given input data.

A machine learning model can transform its input data into
meaningful outputs, a process learned from exposure to known
examples of inputs and outputs [4, p. 33], finding statistical
structures in these examples that allow the system to come up
with rules for automating the task [4, p. 32].

In addition to offering an automated solution, machine
learning excels at being able to handle large and complex

multidimensional datasets to which the classical statistical
approach would be impractical.

B. Artificial Neural Networks

Artificial neural networks, which serve as the basis for deep
learning, are loosely inspired by the way neurons, our brain
cells, process information in the brain [5, p. 165].

An artificial neural network is composed of units called
perceptrons. These units are linked together by connections
through which information flows from one unit to another.
Each connection has an associated numerical weight, which
determines the strength of the connection. Each unit then
calculates a weighted sum of its inputs that is directed to
an activation function—a function that applies a non-linear
transformation to the sum. This nonlinear activation function
gives the neural network the ability to represent most functions
[6, p. 729].

These units are then grouped into layers where, in the more
traditional feedforward network, each unit only receives inputs
from units in the first preceding layer. After all layers executed
this process, the output layer returns the predictions made and
a cost function is used to evaluate them. The cost function
evaluates how far off the predictions are compared to the true
output data, allowing the weights of all units to be updated,
decreasing the total error and bringing the predicted values
closer to the true values.

Each unit, having different weights and inputs, analyzes
different sections of the information with different priorities in
order to approximate a function that maps input data to output
data [5, p. 164]. This approximated function can used to make
predictions for new input data for which the respective outputs
are unknown.

C. Deep Learning

Deep learning is a subfield of machine learning that takes
neural networks further by introducing multiple successive
layers of units, having an emphasis on learning successive
layers of meaningful representations in the data. Modern
deep learning commonly involves dozens or even hundreds of
successive layers of representation, all learned automatically
by exposure to the training data [4, p. 35].

Deep learning excels at dealing with large amounts of data
unlike any other machine learning algorithm. It also removes
the need for feature engineering, as the model can learn and
adjust its internal features jointly, greatly simplifying machine
learning workflows [4, p. 35].

While neural networks have been researched for decades,
deep learning only became a trend in machine learning in
recent years, as it became more useful and powerful due to
the availability of large amounts of data thanks to the internet
and the popularization of graphics processing units (GPUs) for
parallelizing computational tasks [4, p. 51] [5, p. 12].

D. GPU Acceleration

The training phase of deep learning is a slow and com-
putationally intensive process, where each iteration requires

the computation of many matrix multiplications. To accelerate
this process, these operations can be executed on multiple
computational units using parallelism.

GPUs can be used for this purpose, as they are not only
a powerful graphics engine but also a highly parallel pro-
grammable processor featuring peak arithmetic and memory
bandwidth that substantially outpaces its CPU counterpart [7,
p. 879].

GPUs are built for different demands than CPUs, having to
handle large amounts of data and hundreds of operations per
input to be able to satisfy the demands of complex real-time
applications. They are also perfectly suited for parallelism,
relying on a large number of programmable processing cores
and having a focus on throughput rather than latency [7,
p. 879].

GPU’s increase in programmability and capability allowed
mapping a broad range of computationally demanding, com-
plex problems to the GPU [7, p. 879]. One of these appli-
cations is deep learning, where its use in a machine learning
competition in 2012 sparked the current interest in it [8].

E. Feature Engineering

Feature engineering is the process of using one’s own expert
knowledge about a specific domain to make the algorithm
work better by applying nonlearned transformations to the data
before training a machine learning model [4, p. 151].

With anonymized features, it is difficult to apply expert
knowledge for feature engineering in a reliable way, as the
true meaning of each feature can only be guessed.

F. Feature Selection

Feature selection consists of selecting an appropriate set of
features that have desired properties for solving a particular
problem. Designing the ideal feature space can incur a huge
cost in terms of computational time or expert knowledge [2].

G. Underfitting, Overfitting, and Regularization

A good machine learning model should be able to generalize
a problem well, performing well not only on the data it was
trained but also on new inputs [5, p. 224].

To achieve that, machine learning models are evaluated not
only for their ability to approximate the true outputs during
training but also for their capacity to correctly predict outputs
over inputs the training algorithm did not have access to the
respective true outputs.

Two problems that could prevent a model from achieving
good generalization are underfitting and overfitting.

Underfitting occurs when, during training, a model fails to
achieve a low training error, being unable to identify structures
in the data that connect input data to outputs and causing the
model to perform below what would be optimal for solving
the problem. This problem usually happens with models that
are too simple for the complexity of the data.

Overfitting can happen when a model is overly complex for
a given problem, being able to achieve low training error but
having a high test error. What causes this discrepancy between

training error and test error is that the model tries to adapt to
the training data in an increasingly precise way, specializing
only in that data. This causes the model to lose generalization
power and to have poor performance when presented with new
data, different from those in which the algorithm has over-
specialized.

While preventing underfitting is just a matter of developing
better models, appropriate measures need to be taken to mini-
mize overfitting while improving models. There are strategies
explicitly designed to reduce the testing error, possibly making
the training error worse, that can help a model achieve better
generalization. These strategies are called regularization [5,
p. 224].

H. Validation with Train and Test Split

To train a neural network with a good generalization power,
we need to evaluate the model’s performance not only on
training data but also on new inputs.

One way of doing this is providing the model with two
sets of data during training: a training set and a test set.
The learning process is performed on the training set. The
test set, however, is used for partial evaluation of the model
on new inputs during training, evaluating the generalization
performance of the model at the same time it is trained. These
two sets must be defined so that each observation of the total
data belongs to only one set, preventing leakage of information
from one set to another.

The purpose of the training procedure in a neural network
is to make the training error decrease indefinitely. However, if
this error decreases too much, the model could reach a state
of overfitting, over-specializing in the training data, losing
generalizing power, and causing performance on new inputs
to be worse. A visual representation of this effect can be seen
in [5, Fig. 5.3].

By monitoring the test error, or generalization error, cal-
culated from the test set, we can identify the occurrence of
overfitting and define the ideal moment to stop the training
process before it overfits. Knowing the iteration of the training
process where the generalization error tends to rise, we can
train the model again and stop it before it reaches that iteration.

I. Early Stopping

A more efficient way of stopping the training procedure
before the model overfits is an automated method called early
stopping. This method allows training to be performed for a
large and arbitrary number of iterations, with the end of the
training process being defined by a stopping criterion rather
than a specific number of iterations. This criterion is defined
by an evaluation metric, calculated on the test set, that needs
to be constantly improving to keep the training process going.
When this metric fails to improve for a prolonged number of
iterations, training is stopped.

It is also possible to define the patience for stopping: a
number of iterations in which the training stoppage is delayed,
allowing a possible rise in evaluation metrics following a drop.

(a) K-Fold CV (b) Group K-Fold CV

(c) Time Series Split (d) Purged K-Fold

Fig. 1. Visualization of how data is split using different CV strategies.

After the training procedure stops, the state of the model at
the time it reached its peak is restored.

Due to its simplicity and unobtrusive nature, early stopping
is the most commonly used regularization technique for deep
learning, requiring no changes to the underlying training
process or to the network structure [5, p. 245].

J. Cross-validation

Defining a single training set and a single test set is an
approach that still leaves room for overfitting to occur. As we
seek models that have a low test error, we may be selecting
models that are only good at predicting for that particular test
set, and not necessarily from new inputs in general. To have
a more reliable test error estimate, cross-validation (CV) can
be used.

The simplest variant of CV, called K-fold Cross-validation
and illustrated in Fig. 1.a, consists of separating the data into
k sets of similar size, called folds, where each observation
belongs to only one of the sets. The model is then trained
using the data from k−1 sets, while the remaining set is used
for testing. This process is repeated until all k sets serve as the
test set exactly once. At the end of the process, performance
is evaluated by calculating the average of the errors found in
each run [9].

Another variant, called Group K-fold Cross-validation, is
used when there is a need to keep together observations
pertaining to a group or category. This variant ensures that by
defining a feature to be evaluated, observations that contain
the same value for that feature will not be split between train
and test sets. [9].

To handle sequential data, there is also the variant Time
Series Split, illustrated in Fig. 1.c. This variant separates the
data while maintaining the temporal order between individual
observations, as well as ensuring that the test data will always
be after the training data in the time sequence [9].

Prado [3, p. 104–105] warns of a deficiency in CV strategies
that leads to failure when working with financial data. This
issue is caused by the sequential correlation between rows in
the dataset, since consecutive data points can be connected
through information, causing information to be leaked from
the training set to the test set leading to overfitting. To fix this,
a cross-validation strategy called ’Purged K-fold’ is proposed.
This strategy, illustrated in Fig. 1.d., is an enhancement of
Time Series Split that creates a ’gap’ between training and
test sets, defining a fixed number of observations that will not
belong to either set, distancing the sets in the temporal order
to minimize information leakage by sequential correlation [3,
p. 105–110].

When using CV, we obtain as a result a number of trained
models equal to the number of folds used to divide the data.
While these models have the same structure, each one learned
different information from different sections of the data.

K. Influence of Random Seeds on Results

Deep learning training algorithms rely on nondeterminism
to improve model accuracy and training efficiency. This non-
determinism introduces variance in deep learning approaches,
causing training runs with the same settings to produce differ-
ent deep learning models with significantly different accuracies
[10].

One way of reducing variance is setting fixed seeds: provid-
ing a number that controls how the pseudorandom algorithm
used to generate random values will operate. This can make
certain parts of the training process to be performed with the
same settings, having a better comparison between multiple
runs [10].

It is also important to note that selecting a seed that
performed well in a specific validation set do not correspond
to a good performance on new, unseen data in general.
Random seeds are not a hyper-parameter to be optimized;
selecting seeds that appear to produce better results will lead to
optimistically biased performance measures. Instead, they can
be used to reduce variance by averaging the results obtained
in multiple runs with different seeds [11].

L. Imputation of Missing Values

Many datasets contain observations with unavailable infor-
mation in some of the features.

Neural networks work exclusively with numerical values,
so these missing spots in the data need to either be removed
or imputed with some value.

A simple strategy that can be used to impute values in these
missing spots consists of assigning the mean of each numerical
feature to every missing value in that feature, or the most
frequent value for categorical features. Another simple strategy
is forward fill, where each row copies values from the first
preceding row with a valid value.

More advanced strategies based on multivariate imputation
can also be used, such as MICE [12] or scikit-learn’s Itera-
tiveImputer [13].

M. Batch Normalization

During training, the distribution of input values in layers is
always changing as the parameters and weights of previous
layers change. This makes training slower by requiring lower
learning rates and careful parameter initialization [14].

By normalizing inputs as they enter each layer, adjusting
values measured on different scales to a common scale, ’batch
normalization’ can help speed up and stabilize training in deep
neural networks, also making them less prone to the effects
of parameter initialization and providing some regularization
[14].

N. Dropout

Overfitting can be reduced with the use of ’dropout’, a
technique that works by randomly deactivating some hidden
units of each layer during training. This essentially simulates
different models within the same model, as the model will be
forced to learn different structures in the data at each iteration
of training due to parts of the information being missing [15].

By learning different structures at each iteration, the model
can be less reliant on specific structures found in the training
data and instead use more generalist structures that would
work in multiple scenarios, increasing the model’s general-
ization power.

O. Label Smoothing

Label smoothing can prevent a model from becoming over-
confident in its predictions. It does so by turning hard labels,
like zeros and ones in a classification problem, into soft labels:
percentages that are not 100% for either class. For example,
each observation with a target value of one could be considered
95% one and 5% zero. It is still not clear why label smoothing
works, but its use has shown remarkable results in many
applications [16].

P. Hyper-parameter Tuning and Hyperopt

There are many parameters in a machine learning model
whose values are not learned through training. These param-
eters, called hyper-parameters, have a great impact on the
learning process and need to be fine-tuned when building
models.

Manually defining values for things such as the number of
layers and units in each layer, regularization parameters, etc.,
is not a viable option in deep learning, as models often have
dozens and even hundreds of hyper-parameters. Instead, we
can use an optimizer to do this tiresome work.

An optimizer such as Hyperopt [17] can test thousands
of value combinations among predefined ranges for multiple
hyper-parameters at once, training models with these values
and ranking them by how they perform.

Q. Dimensionality Reduction

Data with an excessive number of dimensions can be harder
to work with in machine learning, as using more features can
cause an increase in data sparsity and require a bigger number
of computational resources. This phenomenon is called the

’curse of dimensionality’, coined by [18]. Ideally, data should
only have a dimensionality corresponding to the intrinsic
dimensionality of the data, containing only the minimum
number of dimensions needed to observe desired properties
within the data [19].

Dimensionality reduction can be used to transform high-
dimensional data into a meaningful representation of reduced
dimensionality, diminishing the effects of the curse of dimen-
sionality.

R. Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised
dimensionality reduction technique that can simplify the com-
plexity of high-dimensional data while retaining trends and
patterns. It does so by geometrically projecting them onto
lower dimensions called principal components, aiming to find
the best summary of the data using a limited number of
principal components [20].

S. Autoencoders

The autoencoder algorithm is another unsupervised dimen-
sionality reduction method implemented using artificial neural
networks. It aims to learn a compressed representation of its
inputs [21].

Autoencoders are typically composed of three layers: the
first, called encoder, is trained to compress data into a central
layer that is smaller than the encoder, while the last layer,
called decoder, is trained to decompress the data from the
central layer into a state that is as close as possible to the
input data [22].

With the central layer being restricted to a number of units
smaller than the number of original input nodes, autoencoders
produce a compressed representation of the input data that
can convey the same information present in the original data,
achieving the desired dimensionality reduction effect [23].

T. Ensemble and Bagging

Ensemble consists of combining predictions of different
individually trained models, producing a single predictor that
takes advantage of the structures learned by each model in
different parts of the input space [24].

One of the most used methods for ensembling models is
called bootstrap aggregation, also known as bagging. It works
by calculating the simple average of the predictions found by
each individual model, being able to reduce variance and bias
by using a majority voting approach rather than relying on a
single model that could be underperforming in certain parts of
the input space or experiencing overfitting [3, p. 94–98].

III. DATASET

The dataset provided by the competition, according to
[25], contains 2 390 491 rows of financial data collected over
the course of 500 days. Each row representing a business
opportunity for which an action value has to be predicted:
one to perform the trade and zero to refuse it.

This dataset is sequential, with data observations arranged in
a temporal order. It contains a set of 130 anonymized features,

meaning that nothing is known about what each feature and its
values represent, as they are not named with descriptive labels.
Other columns provided and properly identified are detailed in
Table I.

TABLE I
TRAINING DATASET

Feature Description

date Indicates the day on which the trade occurred.
Assumes integer values between 0 and 499.

weight Numerical weight of each trade. Assumes positive
real values.

resp Return of each trade. Assumes real values.

resp {1,2,3,4} Same as resp, but at different time horizons.

feature
{0,1,...,129}

Anonymized features. Each feature assumes differ-
ent numerical ranges.

ts id A sequential unique identifier. Assumes positive
integer values.

action Field that needs to be added to the dataset, asso-
ciating each trade to an action. Must assume the
values 0 or 1.

From these 130 features, 88 of them contain missing values
that need to be dealt with.

One particular property of this dataset confirmed by the
organization of the competition is that, while it contains
chronologically ordered data, its rows come from multiple
different assets [26]. This means that each row might not
have a relationship with other adjacent rows, and due to the
anonymized features it is not possible to separate these rows
by asset either, essentially making each trading opportunity an
independent event.

In addition to this training dataset, the competition also
detailed how its evaluation dataset, used by the platform to
calculate scores and rank models, is structured. This dataset
is served by the platform row-by-row on server-side when
submitting models. Access to this dataset was not made
available to participants.

This evaluation dataset differs from the training dataset
detailed in Table I only by the absence of the fields resp and
resp {1,2,3,4} [25].

IV. METHODOLOGY

This work adopts a quantitative and experimental approach
consisting of testing and evaluating different deep learning
and machine learning techniques in an incremental way. By
comparing the performance of various techniques with similar
goals, we select those best fitted for the problem at hand. At
the end of each step, the chosen technique is integrated into
an existing model formed by the techniques selected in the
previous steps.

By starting with a simple model, we can isolate and improve
its parts, aiming to gradually improve its performance as
we progress. This approach is also needed due to the fact

that testing every combination of every technique with every
possible hyper-parameter value in an extensive combinatorial
search is unfeasible when working with deep learning.

The metric used to evaluate the results is the ’utility score’,
proposed by the competition [1] and defined as follows:

Each trade j has an associated weight and resp, which
represents a return. For each date i:

pi =
∑
j

(weightij ∗ respij ∗ actionij) (1)

t =

∑
pi√∑
p2i

∗

√
250

|i|
(2)

where |i| is the number of unique dates in the test set. The
utility is then defined as:

utility score = min(max(t, 0), 6)
∑

pi (3)

This work was concluded many months after the end of
the submission phase of the JSMP competition. This rendered
us unable to use the official evaluation from the competition,
as the evaluation dataset was not made available. Instead,
we defined a validation set to simulate the official evaluation
dataset. This validation set is composed of the last 50 days
of data in the training dataset, while the remaining 450 days
were used for training. Like in the evaluation set, the fields
resp {1,2,3,4} and resp were removed, with the latter being
used to calculate the utility score after inference.

The implementation of the code used in this work was
made using Python and its libraries, with the execution being
performed on Kaggle’s cloud computing environment [27]
using GPU acceleration.

For the implementation and execution of neural networks,
the Keras library (version 2.6.0) was used. Among other
neural network libraries available, Keras was chosen for its
ease of use and ease of learning. Other libraries used include
numpy (version 1.21.6) and pandas (version 1.3.5), used for
data processing, sci-kit learn (version 0.23.2), which provides
various machine learning tools, matplotlib (version 3.5.2),
for automated plotting of graphs and images, and Hyperopt
(version 0.2.7), for hyper-parameter tuning. All code used in
this work is available for public access on Kaggle [28] and
GitHub [29].

Training was performed using a 5-fold CV strategy called
Purged Group Time Series Split, a simple modification of
Purged K-fold that includes the group separation from Group
K-fold. This was used to keep data from the same day together,
as having intra-day information split between train and test sets
could cause information leakage. A gap of 20 days between
train and test sets was used. To combine the predictions of
the five models trained in the 5-fold CV, the weighted average
proposed by [30, eq. (3)] was used, giving higher importance
to models trained in more recent data as well as accounting for
the uneven sizes of training sets seen in Fig. 1.d. To stop each
training procedure, early stopping was used with patience set
to 12 iterations.

We started by evaluating different types of supervised deep
learning models. With the training dataset containing observa-
tions from multiple assets, we opted not to use Long Short-
term Memory (LSTM) networks—widely used for sequential
data [31]—as this property of the data would defeat the
purpose of recurrent networks. Instead, multilayer perceptron
networks were used.

As seen in section III, the column responsible for deter-
mining which trades are performed is not included in the
training dataset. It can easily be set by doing a simple
transformation over the resp column, with negative values of
resp translating to zero and positive values translating to one.
With this newly set binary column, it is possible to work in a
classification model that can assign trades the values zero and
one. Alternatively, we could instead build a model to predict
the resp field itself, later converting the predictions into zeros
and ones to get the action column.

Other possibility that this dataset gives us is to use the
alternative resp fields: resp 1, resp 2, resp 3, and resp 4.
Instead of predicting a single action value based on the resp
field, we could instead predict 5 action values based in the 5
resp fields available, taking their average to produce a final
answer.

These starter models were made using the hyper-parameters
listed in Table II. The majority of them are the most commonly
used for the respective type of model, such as the Adam
optimizer [32] and the Rectified Linear Unit (ReLU) activation
function [33], with exception being the large batch size used
to speed up training due to the large size of the dataset.

As stated by [5, p. 427], manually selecting hyper-
parameters can work well when the user has a good starting
point, such as information given by others who worked on the
same type of application, or when the user has months or years
of experience in exploring hyper-parameters for similar tasks.
As we do not possess such starting points, we took the liberty
of selecting an arbitrary network topology with three hidden
layers, each with a number of units equal to the number of
units in the input layer. This topology, as well as other hyper-
parameters, will later be improved using automated methods
for finding better hyper-parameters.

We opted not to remove any observation or feature due to
missing data, as deep neural networks are favored by large
amounts of data. Instead, imputation of missing values was
performed using two simple strategies: mean and forward fill.
More sophisticated strategies could not be used, as these would
require a huge amount of computational resources to operate
in such a large dataset.

Additionally, a missing indicator variant was tested for both
strategies. This variant consists of adding a new binary feature
to the dataset for each original feature with missing values.
This new feature assumes the value one if the feature it was
based on had a missing value in that row, and zero otherwise.
This variant is used to keep a record of missing values after
imputation, allowing the model to use the missingness of data
as information.

TABLE II
MODEL SETTINGS

Model type

Classification Regression

Number of
layers

3 3

Units in each
layer

130;130;130 130;130;130

Learning rate 0.001 0.001

Activation
function

ReLU ReLU

Batch size 4096 4096

Optimizer Adam Adam

Loss function Binary
Cross-entropy

Mean Squared
Error

Early stopping
metric

Maximize AUC Minimize Mean
Squared Error

Missing value
imputation
strategy

Mean Mean

For regularization, three techniques were tested both indi-
vidually and in conjunction: batch normalization, dropout, and
label smoothing.

To tune hyper-parameters, the bayesian optimizer Hyperopt
was used. It allows us to set a custom objective function to be
minimized, making it possible to use any kind of evaluation
metric. Two different objective functions were used for testing
hyper-parameters:

1) The negative weighted average of the five early stopping
metrics achieved in a 5-fold CV.

2) Utility score obtained from predictions subtracted from
the maximum utility score calculated using the true
values. This objective function also uses a 5-fold CV.

The tuning process was split into three steps, with the values
found in each step being fixed to perform the following step.
This choice was made to make the search space smaller,
allowing the search algorithm to test a bigger number of
combinations in each step. These steps are:

1) Tune activation functions, testing the widely used ReLU
activation and the Swish activation, an activation func-
tion proposed by [34] to replace ReLU that showed
improvement on deep networks applied to a variety of
domains.

2) Tune different values for number of layers and number
of units in each layer.

3) Tune regularization hyper-parameters such as dropout
rates and label smoothing factor.

The ranges and options tested for each hyper-parameter can
be seen in Table III.

For dimensionality reduction, two techniques were evalu-
ated: PCA and Autoencoders.

TABLE III
HYPER-PARAMETER TUNING - RANGES AND OPTIONS

Hyper-parameter Value ranges/options

Activation function [relu, swish]

Number of layers 3 ≤ x ≤ 5, x ∈ N

Units in each layer 32 ≤ x ≤ 1024, x ∈ N

Dropout rate - input layer 0.0 ≤ x ≤ 0.2, x ∈ R

Dropout rate - hidden layers 0.2 ≤ x ≤ 0.5, x ∈ R

Label smoothing factor 0.0 ≤ x ≤ 0.5, x ∈ R

To decide the number of principal components to use as a
limit to PCA, a ’scree plot’ was made, suggested by [35]. This
plot can help us visualize the contribution of each subsequent
principal component to the summarization of the original data.

The autoencoder used in this work is not a separate model to
preprocess the data. Instead, it can turn a classification model
into a ’deep bottleneck classifier’, with the encoder added to
the existing structure of a classification model as a layer that
goes after the input layer and before the first hidden layer.
This was proposed by [36] as a way to introduce supervision
in autoencoders by taking advantage of the backpropagation
coming from the supervised classification model to finetune
its reconstruction error.

Lastly, bagging was used for ensembling models. To select
more models for the ensemble, hyper-parameter tuning was
performed again to select two more models, totaling 3 models
with similar performance.

V. RESULTS

This section presents and compares the performance of
the techniques defined in section IV using the utility scores
calculated over the validation set using the predictions of
each model. The maximum utility score that can be achieved
with this validation set, calculated using its true values, is 20
083.50.

To remedy the effects of random seeds on results and
increase the statistical validity of this work, five executions
were performed, each with a different fixed seed. These five
different seeds are the same for every analysis—zero, one, two,
three, and four—and were set for both training and validation.

Starting with model types, we can see in Table IV that re-
gression showed considerably worse results than classification,
with the multitarget approach achieving slightly better scores
than the simple classification approach on average. With these
results, the multitarget classification model was selected in this
step.

Next, imputation methods were evaluated using the multitar-
get classification model selected in the previous step. Results
in Table V show a slight increase in the average utility score
by using missing indicator in conjunction with mean, while
forward fill achieved worse results in both variants. Due to this

TABLE IV
RESULTS - MODEL TYPE

Model
Type

Utility score

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4 Average

Regression 144.36 141.85 261.66 96.92 198.78 168.71

Classification 717.30 477.30 662.00 477.67 573.62 581.58

Multitarget
classification

581.33 664.92 378.72 778.63 597.43 600.21

increase in scores, mean with missing indicator was selected
for missing value imputation.

TABLE V
RESULTS - IMPUTATION OF MISSING VALUES

Impu-
tation
Strategy

Utility score

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4 Average

Mean 648.78 555.43 500.95 767.29 702.62 635.01

Forward fill 814.34 720.76 382.12 750.80 487.92 631.19

Mean with
missing
indicator

686.49 655.70 484.19 745.72 639.70 642.36

Forward fill
with
missing
indicator

675.19 742.78 420.76 820.62 433.30 618.53

Regularization techniques were evaluated individually and
in pairs. In [15], dropout was used by randomly deactivating
50% of units in hidden layers and 20% of units in the input
layer. For this initial analysis, a lower rate of dropout was
used, with 30% for hidden layers and 10% for input layers.
For label smoothing, a small factor of 0.1 was used to create
the soft labels.

Dropout stands out with the biggest contribution to an
increase in the utility score, as can be seen in Table VI.
Batch normalization and label smoothing, while showing little
improvement as standalone regularization strategies, managed
to increase dropout’s scores further when coupled with it. For
this reason, all three regularization techniques were kept in the
model.

The hyper-parameters found after following the 3-step
hyper-parameter tuning with both objective functions can be
seen in Table VII, while its results are listed in Table VIII.

Unfortunately, due to the large size of the data and models
used, a small limit of combinations tested in each execution
had to be set to avoid out-of-memory errors. A limit of 30, 20
and 15 combinations were used for models with three, four,

TABLE VI
RESULTS - REGULARIZATION

Regular-
ization
Strategy

Utility score

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4 Average

None 575.56 677.33 402.88 550.92 530.29 547.40

Batch nor-
malization

478.22 739.49 548.07 543.913 514.91 564.92

Dropout 706.221 756.425 768.530 831.643 770.701 766.70

Label
smoothing

665.77 538.62 514.37 575.48 497.55 558.35

Batch nor-
malization +
dropout

890.47 831.44 968.01 900.56 865.70 891.23

Batch nor-
malization +
label
smoothing

444.16 681.13 545.59 600.77 453.57 545.04

Dropout +
label
smoothing

810.35 805.46 868.17 793.73 804.24 816.39

All 3
strategies

913.62 807.21 951.89 835.60 830.83 867.83

and five hidden layers, respectively, effectively limiting the
algorithm’s capability of finding better models.

The two objective functions achieved similar results with
three and four hidden layers. When compared with the pre-
vious model, both achieved slightly worse scores with three
layers and fairly worse scores with four layers. The second
objective function, however, managed to find a better model
with five layers. This was the model used in the following
step.

Starting with PCA for dimensionality reduction, the scree
plot in Fig. 2 shows that less than 100 principal components
are enough to achieve maximum explained variance, meaning
that less than 100 principal components are enough to explain
the original data in its entirety. With this analysis, 80 principal
components were used.

With the results presented in Table IX, the autoencoder
approach was chosen for dimensionality reduction, as it man-
aged to improve scores compared to an execution without
dimensionality reduction, while PCA achieved worse scores.

The hyper-parameters used for the three models used for
bagging can be seen in Table X, while the results are listed in
Table XI.

These results show that every ensemble of two models
managed to outperform its individual models on average,
with the 3-model ensemble also outperforming any 2-model
ensemble.

Finally, all models trained were combined to form a single
predictor, averaging the predictions of every model trained in
each of the five folds of CV over five different seeds and three

TABLE VII
HYPER-PARAMETERS FOUND USING HYPER-PARAMETER TUNING

Hyper-parameter Objective function 1 Objective function 2

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Activation function swish swish swish swish swish swish

Number of hidden layers 3 4 5 3 4 5

Units in hidden layer 1 560 256 272 592 496 208

Units in hidden layer 2 592 288 1008 320 512 48

Units in hidden layer 3 1008 720 336 880 400 112

Units in hidden layer 4 - 240 560 - 112 848

Units in hidden layer 5 - - 672 - - 624

Dropout rate - input layer 0.0437 0.1190 0.1301 0.0562 0.0102 0.1554

Dropout rate - hidden layer 1 0.4622 0.2368 0.2007 0.4362 0.3626 0.4770

Dropout rate - hidden layer 2 0.3821 0.2059 0.3748 0.3752 0.2640 0.2004

Dropout rate - hidden layer 3 0.3044 0.3489 0.2981 0.3518 0.2080 0.4212

Dropout rate - hidden layer 4 - 0.3263 0.3524 - 0.2258 0.4607

Dropout rate - hidden layer 5 - - 0.3143 - - 0.4318

Label smoothing factor 0.1579 0.4483 0.2414 0.0704 0.1336 0.4721

TABLE VIII
RESULTS - HYPER-PARAMETER TUNING

Model Utility score

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4 Average

Previous
model

896.15 786.61 819.53 844.59 805.06 830.39

Objective 1
Model 1

763.27 777.06 872.09 837.36 839.40 817.83

Objective 1
Model 2

729.94 766.64 822.54 573.39 718.72 722.25

Objective 1
Model 3

682.48 733.52 796.43 697.23 838.77 749.68

Objective 2
Model 1

775.05 808.22 819.60 841.29 841.87 817.20

Objective 2
Model 2

795.30 752.18 682.41 656.94 730.12 723.39

Objective 2
Model 3

901.96 871.85 922.16 804.22 846.92 869.42

different model structures. The utility scores achieved by the
final bagging ensemble can be seen in Table XII.

VI. CONCLUSION

Comparing the utility score achieved by the first classifi-
cation model evaluated in Table IV with the final 3-model
5-seed 5-fold classification ensemble, an increase of roughly
54% in the utility score can be seen. This increase is even more
prominent when comparing the ensemble with the regression

Fig. 2. PCA - Scree plot

TABLE IX
RESULTS - DIMENSIONALITY REDUCTION

Reduction
Technique

Utility score

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4 Average

No
reduction

904.03 881.20 909.73 810.14 818.15 864.65

PCA 844.43 753.18 769.41 804.06 790.05 792.23

Autoencoder 801.69 938.18 922.18 958.51 761.89 876.49

TABLE X
ENSEMBLE - MODELS USED

Hyper-parameter Model 1 Model 2 Model 3

Activation function swish swish swish

Number of hidden layers 5 5 5

Units in hidden layer 1 208 240 416

Units in hidden layer 2 48 352 504

Units in hidden layer 3 112 796 256

Units in hidden layer 4 848 176 568

Units in hidden layer 5 624 448 368

Dropout rate - input layer 0.1554 0.1302 0.1747

Dropout rate - hidden layer 1 0.4470 0.2612 0.4661

Dropout rate - hidden layer 2 0.2004 0.4328 0.4207

Dropout rate - hidden layer 3 0.4212 0.4263 0.2335

Dropout rate - hidden layer 4 0.4607 0.4495 0.4132

Dropout rate - hidden layer 5 0.4318 0.3094 0.4563

Label smoothing factor 0.4721 0.4746 0.3964

TABLE XI
RESULTS - BAGGING

Model
Ensemble

Utility score

Seed 0 Seed 1 Seed 2 Seed 3 Seed 4 Average

Model 1 829.96 889.57 749.19 774.30 815.01 811.61

Model 2 992.72 1062.25 682.31 636.83 750.68 824.96

Model 3 824.81 724.76 738.81 793.36 966.39 809.62

Model 1 +
Model 2

902.39 980.16 776.86 672.77 814.04 829.24

Model 1 +
Model 3

816.50 856.63 786.16 797.89 903.04 832.04

Model 2 +
Model 3

884.08 844.88 814.29 796.01 880.61 843.97

All 3
Models

889.76 895.29 794.86 795.58 853.35 845.77

TABLE XII
RESULTS - BAGGING WITH ALL MODELS

Models x 5 seeds x 5 folds Utility score

Model 1 (Total 25 models) 854.49

Model 2 (Total 25 models) 842.76

Model 3 (Total 25 models) 793.15

Models 1 + 2 (Total 50 models) 888.23

Models 1 + 3 (Total 50 models) 883.49

Models 2 + 3 (Total 50 models) 815.42

Models 1 + 2 + 3 (Total 75 models) 895.62

model of Table IV, the first to be discarded, with an increase
of 430.87%.

By following the incremental approach with the evaluation
method defined in this work and using the techniques pre-
sented here, we managed to gradually improve the model’s
predicting and generalization power, increasing the utility
score at each step and achieving a final score that corresponds
to 4.46% of the maximum utility score for the validation set
used.

We believe that this approach can be used to solve similar
financial machine learning problems with the same degree
of success. By evaluating techniques incrementally, selecting
those better fitted for each application, and having the reduc-
tion of overfitting as a key objective, reliable deep learning
models with great predicting and generalization capabilities
can be developed.

REFERENCES

[1] Jane Street Group, ”Jane Street Market Prediction.” kaggle.com.
https://www.kaggle.com/c/jane-street-market-prediction/overview
(accessed May 5, 2022)

[2] L. Arnold, S. Rebecchi, S. Chevallier, and H. Paugam-Moisy, ”An
introduction to deep learning,” in Proc. European Symp. on Artificial
Neural Networks, Brussels, 2011, pp. 477–488.

[3] M. L. de Prado, Advances in Financial Machine Learning, Hoboken,
NJ: John Wiley & Sons, Inc., 2018.

[4] F. Chollet, Deep learning with Python, New York: Manning Publications,
2018.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, Cambridge:
MIT Press, 2016.

[6] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ: Prentice Hall, 2010.

[7] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, ”GPU computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[8] ”From not working to neural networking,” The Economist, June 25th
2016 ed., June 2016.

[9] scikit-learn, ”Cross-validation: evaluating estimator performance.”
scikit-learn.org. https://scikit-learn.org/stable/modules/cross validation.
html (accessed May 20, 2022)

[10] H. V. Pham et al., ”Problems and Opportunities in Training Deep Learn-
ing Software Systems: An Analysis of Variance,” in 35th IEEE/ACM Int.
Conf. on Automated Software Engineering (ASE), 2020, pp. 771–783.

[11] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
”Deep Reinforcement Learning that Matters,” in Proc. of the 32nd AAAI
Conf. on Artificial Intelligence, New Orleans, 2018, pp. 3207–3214.
doi:10.1609/aaai.v32i1.11694.

[12] S. van Buuren and K. Groothuis-Oudshoorn, ”mice: Multivariate Impu-
tation by Chained Equations in R,” Journal of Statistical Software, vol.
45, no. 3, pp. 1-–67.

[13] scikit-learn, ”Imputation of missing values.” scikit-learn.org. https://
scikit-learn.org/stable/modules/impute.html#iterative-imputer (accessed
August 8, 2022)

[14] S. Ioffe and C. Szegedy, ”Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. of the
32nd Int. Conf. on Machine Learning (ICML), Lille, France, Jul. 2015,
pp. 448—456. doi:10.5555/3045118.3045167.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov. ”Improving neural networks by preventing co-adaptation
of feature detectors,” Jul. 2012.

[16] R. Müller, S. Kornblith, and G. Hinton, ”When does label smooth-
ing help?,” in 33rd Conf. on Neural Information Processing Systems
(NeurIPS), Vancouver, Canada, 2019.

[17] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ”Algorithms for
hyper-parameter optimization,” in Proc. of the 24th Int. Conf. on
Neural Information Processing Systems, Granada, Spain, Dec. 2011, pp.
2546–2554.

https://www.kaggle.com/c/jane-street-market-prediction/overview
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/impute.html#iterative-imputer
https://scikit-learn.org/stable/modules/impute.html#iterative-imputer

[18] R. Bellman, Dynamic Programming, New York: Princeton University
Press, 1957.

[19] L. van der Maaten, E. Postma, and J. van den Herik ”Dimensionality
Reduction: A Comparative Review,” Journal of Machine Learning
Research - JMLR, vol. 10, pp. 66–71, Jan. 2007.

[20] J. Lever, M. Krzywinski, and N. Altman, ”Principal compo-
nent analysis,” Nature Methods, vol. 14, pp. 641–642, 2017,
doi:10.1038/nmeth.4346.

[21] W. Wang, Y. Huang, Y. Wang, and L. Wang, ”Generalized autoencoder:
A neural network framework for dimensionality reduction,” in Proc. of
the 2014 IEEE Conf. Comput. Vis. Pattern Recog. Workshops, 2014,
pp. 496–503.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ”Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986, doi:10.1038/323533a0.

[23] Y. Wang, H. Yao, and S. Zhao, ”Auto-encoder based dimensionality
reduction,” Neurocomputing, vol. 184, no. C, pp. 232–242, Apr. 2016,
doi:10.1016/j.neucom.2015.08.104.

[24] D. Opitz and R. Maclin, ”Popular ensemble methods: An empirical
study,” Journal of Artificial Intelligence Research, vol. 11, no. 1,
pp. 169–198, July 1999.

[25] Jane Street Group, ”Jane Street Market Prediction - Data.” kaggle.com.
https://www.kaggle.com/c/jane-street-market-prediction/data (accessed
Mar 5, 2021)

[26] Jane Street Group, ”Discussion - Are the observations for a single
instrument or different instruments?.” kaggle.com. https://www.
kaggle.com/c/jane-street-market-prediction/discussion/199923#1094154
(accessed May 30, 2022)

[27] Kaggle, ”Notebooks Documentation.” kaggle.com. https://www.kaggle.
com/docs/notebooks (accessed Mar 7, 2021)

[28] W. J. C. de Ávila, Aug. 2022, ”JaneStreet - Index,” Kaggle. [Online]
Available: https://www.kaggle.com/wendellavila/janestreet-index/

[29] W. J. C. de Ávila, Aug. 2022, ”JSMP Notebooks,” GitHub. [Online]
Available: https://github.com/wendellavila/JSMP-Notebooks

[30] J. P. Donate, P. Cortez, G. G. Sánchez, and A. S. de Miguel, ”Time series
forecasting using a weighted cross-validation evolutionary artificial
neural network ensemble,” Neurocomputing, vol. 109, pp 27–32, June
2013.

[31] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and
J. Schmidhuber, ”LSTM: A search space odyssey,” IEEE transac-
tions on neural networks and learning systems, vol. 28, Mar. 2015.
doi:10.1109/TNNLS.2016.2582924.

[32] D. P. Kingma and J. L. Ba, ”Adam: A method for stochastic optimiza-
tion,” in Int. Conf. on Learning Representations (ICLR), 2015.

[33] J. Schmidhuber, ”Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, pp. 85–117, Jan. 2015,
doi:10.1016/j.neunet.2014.09.003.

[34] P. Ramachandran, B. Zoph, and Q. V. Le, ”Swish: A self-gated activation
function,” Oct. 2017.

[35] L. H. Nguyen and S. Holmes, ”Ten quick tips for effective dimen-
sionality reduction,” PLOS Computational Biology, vol. 15, June 2019,
doi:10.1371/journal.pcbi.1006907.

[36] E. Parviainen, ”Deep bottleneck classifiers in supervised dimension
reduction,” in Proc. of the 20th Int. Conf. on Artificial Neural Networks:
Part III, pp.1–10, Sep. 2010.

https://www.kaggle.com/c/jane-street-market-prediction/data
https://www.kaggle.com/c/jane-street-market-prediction/discussion/199923#1094154
https://www.kaggle.com/c/jane-street-market-prediction/discussion/199923#1094154
https://www.kaggle.com/docs/notebooks
https://www.kaggle.com/docs/notebooks
https://www.kaggle.com/wendellavila/janestreet-index/
https://github.com/wendellavila/JSMP-Notebooks

	Introduction
	Theoretical Framework
	Machine Learning
	Artificial Neural Networks
	Deep Learning
	GPU Acceleration
	Feature Engineering
	Feature Selection
	Underfitting, Overfitting, and Regularization
	Validation with Train and Test Split
	Early Stopping
	Cross-validation
	Influence of Random Seeds on Results
	Imputation of Missing Values
	Batch Normalization
	Dropout
	Label Smoothing
	Hyper-parameter Tuning and Hyperopt
	Dimensionality Reduction
	Principal Component Analysis
	Autoencoders
	Ensemble and Bagging

	Dataset
	Methodology
	Results
	Conclusion
	References

