
A study about migrating from HTTrack to Apache Nutch
considering the Math Information Retrieval

Caio M. M. Leite1, Eduardo S. Saccardo1, Flávio B. Gonzaga1

1Instituto de Ciências Exatas - Ciência da Computação
Universidade Federal de Alfenas (UNIFAL-MG)

{caio.leite,eduardo.saccardo}@sou.unifal-mg.edu.br

Abstract. Web crawlers are essential for the functioning of search engines. This
paper aims to analyze and effectively migrate an already implemented HTTrack
crawler to Apache Nutch. Apache Nutch was adequately configured and con-
nected to Apache Kafka, and its crawl data was then stored in a MongoDB
database using a Springboot Application. The results show that four layers were
necessary to index the entire domain, taking between 21 and 23 minutes, com-
pared to HTTrack, which took almost 3 hours more. The use of Apache Nutch
for crawling and Kafka for message queuing proved effective, as it enabled dis-
tributed and scalable data processing.

1. Introduction
It is fair to say that Internet-based information retrieval would collapse if search engines
were not available [Gordon and Pathak 1999]. Furthermore, Google alone had more than
86 billion accesses between July and August of 2022 [Similarweb 2022]. In that regard,
search engines make optimal and target searches so that a user finds their goal, or at least
comes close to it.

The use of search engines in today’s digital age has become an integral aspect
of internet-based information retrieval. Without search engines, the process of finding
relevant and accurate information would be greatly hindered [Gordon and Pathak 1999].
Search engines make it possible for users to find the information they are looking for
in a quick and efficient manner by sorting through vast amounts of data and presenting
relevant results in a matter of seconds. In 2022, the high number of accesses to search
engines, such as Google, further highlights the importance and reliance on these tools in
today’s society.

1.1. Web Crawler
Web crawling is the main technique used by search engines to store and provide in-
sight. This technique is the process used by search engines to collect pages from the Web
[Castillo 2005] and, as such, it can be referred to as systematically browsing the World
Wide Web for Web indexing. Indexing is mapping a document with all the words on the
page to organize each web page efficiently. Thus, when a user searches for something,
the search engine matches each query word with the words of the indexed documents,
returning the documents with greater relevance. A query can be composed of one or more
words.

The Internet can be viewed as a directed graph, where web pages are considered
nodes, and hyperlinks, edges. Thus the search operation may be summarized as a process

of traversing directed graph [Kausar et al. 2013]. A crawler operates from an initial seed
(a text file containing one or several URLs). Like so, the crawler enters all the hyperlinks
of the visited pages, downloading and indexing them to be later processed by the search
engine.

1.1.1. HTTrack and Apache Nutch

HTTrack is a free and open-source web crawler that also serves as an offline browser
[HTTrack 2023]. Developed by Xavier Roche and licensed by GNU(General Public Li-
cense), HTTrack was initially released in 1998. Over the years, several scientific applica-
tions started to use this web crawler. For example, SearchOnMath’s search engine1 can
be cited, which has been using HTTrack since 2008. The most recent and stable HTTrack
version was released in 2017.

Despite being robust and with many features, the HTTrack is a web crawler where
the result of its execution will be a copy of the files written locally to disk. This means that
if some additional actions need to be performed on the downloaded files, like inserting
them into a database, one or more software must be developed to perform such actions.

In this sense, there are more modern alternatives, such as Apache Nutch.Apache
Nutch is a highly extensible and scalable open-source web crawler software project.
[Nutch 2023]. According to Yadav and Goyal [Yadav and Goyal 2015], Nutch excels in
scalability, as it is dynamically scalable and fault-tolerant through Hadoop. Moreover, it
is flexible with its plugin system that can be integrated into different software, such as
Apache Kafka. This possibility means that the output of Apache Nutch can be automated
so that different tasks are performed, for example, pre-processing and data insertion di-
rectly into a database. The fact of being possible to compose an execution pipeline with
the Apache Nutch considerably reduces the need to develop more software.

1.2. Objectives
This work is an initial study to verify the possibility of migrating the SearchOnMath
[Gonzaga 2022] web-crawler infrastructure from the HTTrack to Apache Nutch. The
specifics goals are:

• Index pages containing mathematical formulas using Apache Nutch.
• Develop a Spring Boot application to integrate the Apache Kafka messaging ser-

vice with Apache Nutch.
• Compare the whole process, using the Apache Nutch, with the current SearchOn-

Math’s crawling approach (based on the HTTrack).

2. Related Work
Previous research in this area revealed a scarcity of literature on techniques for prioritizing
and indexing web pages containing mathematical content. This section presents some
recent work using HTTrack or Apache Nutch.

The paper [Sharma and Tribhuvan 2021] describes a web crawler named “Smart
Crawler” and compares its performance with that of a widely used web crawler, HTTrack.

1https://www.searchonmath.com

The experimental evaluation was performed by crawling five selected domains and exper-
imental findings indicate the efficacy of the smart crawler, which is higher than other
crawlers in minimum running time.

Furthermore, [Lopez et al. 2015] discusses how to optimize the open-source web
crawler Apache Nutch for specific domain crawling at a large scale. The paper covers
techniques for improving the efficiency and performance of Nutch, such as configuring
the software for specific types of content or using distributed computing to handle a large
number of pages. It also discusses how to handle the specific challenges that come with
crawling at a large scale, such as dealing with large amounts of data or managing the
resources required to crawl a large number of pages.

Additionally, [Donovan 2021] delves into the use of web crawlers to search and
retrieve relevant documents related to health policy automatically. The authors explain
that a web crawler can be helpful in this context because it can save time and effort
compared to manually searching for information. However, they also note that a web
crawler’s results may not always be comprehensive or accurate and that it is essential to
evaluate the quality of the documents retrieved. The article describes the development
and implementation of a web crawler designed explicitly for health policy documents and
the results of its use. Additionally, it can be used to track the changes in the policies over
time and evaluate the impact of the guidelines on public health.

The article [Tan and Lan 2019] goes over the analysis and improvement of the
Chinese index technology used in the open-source search engine Nutch. It suggests meth-
ods for improving the accuracy and efficiency of the indexing process for Chinese lan-
guage content. The paper examines the current limitations of Nutch’s Chinese indexing
technology, specifically in handling Chinese characters and distinguishing between differ-
ent forms of a Chinese word. It then presents several proposed improvements to address
these limitations, such as implementing a more advanced Chinese word segmentation al-
gorithm and using additional resources like synonym dictionaries to improve the quality
of the index. The article also suggests several experiments and tests to evaluate the effec-
tiveness of these proposed improvements. Overall the article tries to improve the Chinese
indexing technology of the Nutch search engine.

Also, [Jansson et al. 2020] investigates the use of web crawlers to create a web
archive for Swedish trade unions. The authors tested several software programs includ-
ing HTTrack before settling on NetarchiveSuite (NAS) and the data crawler Heritrix.
However, the study’s authors found that they had trouble finding a powerful indexer that
worked well with HTTrack, which led them to opt for NetarchiveSuite and Heritrix in-
stead.

Lastly, [Yu et al. 2020] studied the fundamental principles of web crawlers, in-
cluding their various characteristics and classifications, as well as the technical strategies
utilized in web crawlers, including webpage acquisition and analysis, data storage meth-
ods, and web search strategies.

3. Methodology
As previously mentioned, this work verifies the viability of migrating SearchOnMath’s
web crawler infrastructure from the HTTrack to Apache Nutch. This section presents a
description of the tools as well as the proposed activities.

3.1. HTTrack use case by SearchOnMath

SearchOnMath indexes websites of different types, like Digital Libraries, Forums, and
Scientific Papers repositories. Some of its websites make their content available through
dump files (generated from databases), being not necessary to use web crawlers. This is
the case for the following domains:

• MathOverflow: mathoverflow.net
• StackExchange websites:

– Computational Science: scicomp.stackexchange.com
– Computer Science: cs.stackexchange.com
– Engineering: engineering.stackexchange.com
– Cross Validated: stats.stackexchange.com
– Artificial Intelligence: ai.stackexchange.com
– Quantum Computing: quantumcomputing.stackexchange.com
– Internet of Things: iot.stackexchange.com
– Mathematics Educators: matheducators.stackexchange.com
– Mathematics: math.stackexchange.com
– Physics: physics.stackexchange.com

• Wikipedia (English version): en.wikipedia.org/wiki/Main_Page

Some of the SearchOnMath indexed websites, however, do not provide their con-
tent in the dump file format. For these websites, SearchOnMath uses HTTrack to down-
load the web pages. This is the case for the following domains:

• NIST DLMF: dlmf.nist.gov
• nLab: ncatlab.org
• Physics Forums: physicsforums.com
• PlanetMath: planetmath.org
• Socratic: socratic.org
• Wolfram MathWorld: mathworld.wolfram.com

HTTrack comes with a lot of parameters that can be tuned. A complete list is
available on its official website2. The parameters used by SearchOnMath in most cases
are described as follows:

• -p1: save only html files
• -B: can both go up&down into the directory structure
• -K3: absolute URI links
• -%u: various hacks to limit duplicate URLs (strip //, www.foo.com==foo.com..)
• -#L20 000 000: maximum number of links
• -A1 250 000: maximum transfer rate in bytes/seconds

3.2. Apache Nutch viability study

In this work, both HTTrack and Apache Nutch were configured to fetch the NIST DLMF
(Digital Library of Mathematical Functions). The reason for choosing DLMF as the web-
site to be downloaded is due to its size. It is the smallest website considering the set of
websites indexed by the SearchOnMath. Since this work aims to perform an initial study

2https://www.httrack.com/html/httrack.man.html, accessed on 02/13/2023.

to migrate SearchOnMath’s web crawler infrastructure from the HTTrack to the Apache
Nutch, working with a small website is a good starting point because possible errors can
be detected and fixed faster.

The pipeline comprises Apache Nutch, which will fetch the data from DLMF;
Apache Kafka, where the downloaded data will be recorded (to be consumed later); a
SpringBoot application, which will consume the data from Apache Kafka; process it and
persist it into MongoDB.

The following sections offer more details about Apache Kafka and MongoDB.

3.3. Apache Kafka

Apache Kafka is an open-source distributed streaming system for stream processing,
real-time data pipelines, and large-scale data integration. According to Confluent
[Confluent 2022], one of the prominent companies that maintain the project, Apache
Kafka, consists of a storage layer and a compute layer that combines efficient, real-time
data ingestion, streaming data pipelines, and storage across distributed systems. In short,
this enables simplified data streaming between Kafka and external systems. Figure 1 and
Figure 2 shows the elements of a Kafka cluster.

Figure 1. Representation of a Kafka cluster3.

• Kafka Clusters: A Kafka cluster is an ensemble of multiple Kafka brokers
• Broker: A broker may be analog to a server and each broker is identified with its

ID.

Figure 2. Representation of a Kafka Broker4.

• Topics: Kafka topics are a particular stream of data within the Kafka cluster. A
topic is similar to a table in a database but without all the constraints because

3cloudkarafka.com/blog/part1-kafka-for-beginners-what-is-apache-kafka.
html, accessed on 02/14/2023.

4cloudkarafka.com/blog/part1-kafka-for-beginners-what-is-apache-kafka.
html, accessed on 02/14/2023.

it is allowed to send anything to a Kafka topic. Moreover, a topic supports any
message format, for example, Text file, Binary, and JSON. A data stream is a
sequence of messages. It is not possible to query topics. Instead, it is used by
Kafka producers to send data and Kafka Consumers to read the data. In addition,
Kafka topics are immutable, which means that once data is written to a partition,
it cannot be changed

• Partition: Topics are split into partitions to facilitate scalability. Messages within
each partition are ordered.

• Off-set: offset only has meaning for a specific partition. It may be analog to an
array in C for example, in this case, partitions are different arrays, and offsets are
the indexes of these arrays. Equal offsets may not reflect equal results as they are
different partitions and therefore have different content.

A producer can publish messages on a topic. The published messages are then
stored at a set of servers called brokers. A consumer can subscribe to one or more topics
from the brokers and consume the subscribed messages by pulling data from the brokers
[Kreps et al. 2011].

This work created a Kafka topic and designated Apache Nutch as the producer.
During web crawling, Apache Nutch wrote the data to the Kafka topic. A Spring Boot
application was developed to consume the data from the Kafka topic, with the application
serving as a Kafka consumer.

3.4. MongoDB

MongoDB is an open-source, cross-platform, and distributed document-based database
designed for ease of application development and scaling. It is a NoSQL database
[TutorialsTeacher 2022]. The primary advantage of NoSQL databases is that, unlike re-
lational databases, they handle unstructured data such as documents, e-mail, multimedia,
and social media efficiently [Khan and Mane 2013].

The next section describes in detail how the environment was configured to fetch
and persist the NIST DLMF website data using the proposed pipeline with Apache Nutch.

4. Results

4.1. Environment Configuration

This project utilized the following software versions:

• Apache Nutch: version 1.18
• MongoDB: version 4.2.23
• Apache Kafka: version 2.13-3.2.3
• Spring Boot: 2.7.4 (with OpenJDK version 11.0.17)

The configuration details for each of the software used will be presented below.

4.1.1. Apache Nutch

Considering Apache Nutch, it was necessary to change four configuration files, listed
below:

• index-writers.xml: connect Nutch to different indexers (Kafka in this case).
• regex-urlfilter.txt: filter which URLs to crawl based on regex.
• nutch-site.xml: override nutch-default.xml configurations.
• seed.txt: set up which domains to crawl.

The location of each file within the Apache Nutch directory tree is shown in Figure
3, followed by the description of what was modified on each file.

Figure 3. Nutch hierarchical file system. Source: own elaboration.

File index-writers.xml

In order to connect Apache Kafka to Apache Nutch, the value of the host, port,
and topic must be defined. In this case, the host, port, and topic were defined as follows:

1 <writers ...>
2 <writer ...>
3 <parameters ...>
4 <param name="host" value="localhost" />
5 <param name="port" value="9092" />
6 <param name="topic" value="main-topic" />
7 </parameters>
8 ...
9 </writer>

10 </writers>

Listing 1. Code for the modified index-writers.xml. Source: own elaboration.

File nutch-site.xml

To change a property from Apache Nutch conf/nutch-default.xml file, it is nec-
essary to overwrite them in the nutch-site.xml file. The description for each property is
located in Appendix A. For instance, this project’s nutch-site.xml file is as follows:

name value

plugin.includes

protocol-httpclient|urlfilter-(regex|validator)|
parse-(html|tika)| index-(basic|anchor)|
indexer-(kafka)| scoring-opic|
urlnormalizer-(pass|regex|basic)

fetcher.max.crawl.delay -1
fetcher.server.delay 1.0
http.agent.name Apache Nutch
http.agent.version 1.18
http.agent.description Nutchup for DLMF
http.useHttp2 true
http.redirect.max -1
http.content.limit -1
db.ignore.external.links true
ftp.keep.connection true
indexer.max.title.length -1
file.content.limit -1

Table 1. Modified Nutch properties

File regex-urlfilter.txt

To restrict the crawl to a specific domain, it is required to configure the conf/regex-
urlfilter.txt file. As an example for crawling on the DLMF domain that contains a digit on
the subdirectory part of the URL (example: https://dlmf.nist.gov/20), the following regex
was added at the end of the file:

1 ##### DLMF RULES #####
2 # dlmf: seeds=[http://dlmf.nist.gov/]
3

4 # ok paths
5 +ˆhttps?://dlmf\.nist\.gov/\d*(\.\d+)?$
6

7 # reject anything else
8 -.

Listing 2. RegEx filter for DLMF domain. Source: own elaboration.

Figure 4. Regex explanation. Source: own elaboration

File seed.txt

To specify which domains you want to crawl, create a folder named urls with
a file named seed.txt inside. In this example, the file contains only one line: http:
//dlmf.nist.gov.

Crawl output format

Page [
id=[”https://dlmf.nist.gov/”],
search=[”DLMF: NIST Digital Library of Mathematical Functions”],
tstamp=[”Wed Jan 25 18:13:06 BRT 2023”],
segment=[”20230125181245”],
digest=[”1c52bfb7d156579baf02b5631d556e46”],
host=[”dlmf.nist.gov”],
boost=[”0.0”],
title=[”DLMF: NIST Digital Library of Mathematical Functions”],
url=[”https://dlmf.nist.gov/”],
content=[”DLMF: NIST Digital Library of Mathematical Func-

tions\nDLMF\nIndex\nNotations\nSearch\nHelp?\nCiting\nCustomize\nAbout
the Project\nNIST Digital Library of Mathematical Functions\nProject News\n2022-
12-15 DLMF Update; Version 1.1.8; MathML improvements\n2022-12-15 Richard B.
Paris, Associate Editor of the DLMF, dies at age...]
]

4.1.2. MongoDB structure

The MongoDB used in this project consists of a single collection that includes multiple
documents of a single type referred to as Pages. Each Page document is structured with
the following fields: search, tstamp, segment, digest, host, boost, id, title, url, and content,
which are in accordance with the output of an Apache Nutch crawl. The structure of the

web pages being stored in the MongoDB database can be observed in the “Crawl output
format” part.

4.1.3. Apache Kafka

Considering that the main Apache Kafka folder is inside the home directory, the following
commands will start the Kafka system.

Access the Kafka home directory:
cd ∼/kafka 2.13-3.2.3
Run zookeeper:
./bin/zookeeper-server-start.sh ./config/zookeeper.properties
Run kafka server:
./bin/kafka-server-start.sh ./config/server.properties

bin/crawl -i -s ./urls/ ./crawl/ (profundidade)

4.1.4. Spring Boot

A Spring Boot application through Spring initializr5 with “Spring for Apache Kafa” and
“Spring Data MongoDB” dependencies has been created, as shown in Figure 5.

Figure 5. Spring Initializr example.

4.1.5. Kafka consumer through the spring application

Hereafter is the code for the service class that consumes the topic data and persists in the
database. The other project classes are available in Appendix B.

1 package com.example.demo.service;
2

5https://start.spring.io/

3 import org.apache.kafka.clients.admin.NewTopic;
4 import org.json.JSONObject;
5 import org.springframework.context.annotation.Bean;
6 import org.springframework.kafka.annotation.KafkaListener;
7 import org.springframework.kafka.config.TopicBuilder;
8 import org.springframework.stereotype.Service;
9

10 import com.example.demo.models.Page;
11 import com.example.demo.repository.MongoDBRepository;
12

13 @Service
14 public class ConsumerService {
15

16 private final MongoDBRepository pageRepository;
17 public ConsumerService(MongoDBRepository pageRepository) {
18 this.pageRepository = pageRepository;
19 }
20 @Bean
21 public NewTopic topic() {
22 return TopicBuilder.name("main-topic")
23 .partitions(0)
24 .replicas(1).build();
25 }
26

27 @KafkaListener(id = "myId", topics = "main-topic")
28 public void listen(JSONObject in) {
29 Page page = new Page();
30 page.setSearch(in.get("search").toString());
31 page.setTstamp(in.get("tstamp").toString());
32 page.setSegment(in.get("segment").toString());
33 page.setDigest(in.get("digest").toString());
34 page.setHost(in.get("host").toString());
35 page.setBoost(in.get("boost").toString());
36 page.setId(in.get("id").toString());
37 page.setTitle(in.get("title").toString());
38 page.setUrl(in.get("url").toString());
39 page.setContent(in.get("content").toString());
40 page.setBase64content(in.get("base64content").toString());
41 pageRepository.insert(page);
42 }
43 }

Listing 3. Code for Listening to Kafka Topic and Inserting Pages into MongoDB.
Source: own elaboration.

In the code above, a Kafka topic named “main-topic” is created from lines 20 to
25. Moreover, the consumer is created from lines 27 to 42. The consumer fetches the
topic data, transforms it into a JSON Object, and then persists in MongoDB.

4.2. Crawl command
Finally, to initiate the crawl process, the following command can be executed within the
Apache Nutch home directory, after ensuring the initialization of the ZooKeeper, Kafka,
and Spring Boot application:

bin/crawl -i -s ./urls/ ./crawl/ 1000

In which:

• -i - Indexes crawl results into a configured indexer.
• -s - Path to seeds file(s).
• /urls/ - Directory containing the seed.txt file.
• 1000 - Number of iterations (depth).

4.3. Data analysis
Exploring the crawl’s depth on “dmlf” and executing the crawl multiple times showed
that four layers were necessary to index the entire domain. The first layer indexed one
page, the second indexed 36 pages, the third indexed 856 pages, and the final one indexed
15 pages. The entire process took between 21 to 23 minutes.

Based on Figure 6, it can be exemplified that the first layer belongs to the website’s
homepage (crawler’s seed). As mentioned, the second layer consists of 36 pages. As
such, 36 topics can be seen in the figure, corresponding to the links that the nutch will
pick up. It is noteworthy that Nutch exclusively considers URLs that conclude with digits
due to the regex filter employed in its crawling mechanism for this particular website.
Consequently, it refrains from exploring other hyperlinks. To illustrate, upon clicking
the hyperlink “1 Algebraic and Analytic Methods”, the user is directed to “https://
dlmf.nist.gov/1”, which aligns with the previously-mentioned restriction.

Figure 6. DLMF: NIST home page

Executing the crawl process with HTTrack on “dlmf” took 3 hours and 17 minutes.
During the crawling execution, it was possible to verify that the HTTrack checked links

pointing to non-html files (like formulas). However, only html files were downloaded (as
expected). The HTTrack execution was based on the following parameters:

httrack https://dlmf.nist.gov/ -dlmf.nist.gov/bib/* -dlmf.nist.gov/about/* -*#* -*?* -
.php -p1 -B -K3 -%u -L20000000 -F “Mozilla/5.0 (Windows; U; Windows NT 5.0;
en-US; rv:1.1) Gecko/20020826” -A1250000 -*.mag -*.viz -*.webgl -*.pmml -*.x3d

Where:

• https://dlmf.nist.gov/ - site to be downloaded
• -F - browser identity
• don’t crawl URLs matching the following patterns:

– -dlmf.nist.gov/bib/*
– -dlmf.nist.gov/about/*
– -*#*
– -*?*
– -*.php*
– -*.mag
– -*.viz
– -*.webgl
– -*.pmml
– -*.x3d

The rest of the parameters (like -p1) was explained in Section 3.1.

5. Conclusion
In conclusion, Apache Nutch is a powerful tool for web crawling and indexing, providing
a scalable and efficient solution for data acquisition. Its integration with Apache Kafka
and MongoDB allows for a distributed and fault-tolerant architecture that can handle large
amounts of data. Moreover, Apache Nutch has the ability to scale and provide more
advanced data analysis.

HTTrack, on the other hand, is a more straightforward tool that is easy to use
and requires minimal setup. It is a good choice for small to medium-sized web crawl-
ing projects and does not require extensive technical knowledge. However, it lacks the
advanced data analysis capabilities of Apache Nutch and may not be suitable for more
complex projects.

In summary, when crawling the DLMF domain, the Apache Nutch demonstrated
better results than the Httrack crawler used by SearchOnMath. For future works, we
recommend the complete migration from the HTTrack to Apache Nutch considering the
domains indexed by SearchOnMath.

Appendix A: nutch-site.xml properties explanation

Most of the explanations in this appendix were taken from the nutch.default.xml file.

• plugin.includes: Regular expression naming plugin directory names to include.
Any plugin not matching this expression is excluded. Solr indexer was replaced
by the Kafka indexer.

• fetcher.max.crawl.delay: If the Crawl-Delay in robots.txt is set to greater than
this value (in seconds) then the fetcher will skip this page, generating an error
report. If set to -1 the fetcher will never skip such pages and will wait the amount
of time retrieved from robots.txt Crawl-Delay, however long that might be.

• fetcher.server.delay: The number of seconds the fetcher will delay between suc-
cessive requests to the same server. Note that this might get overridden by a
Crawl-Delay from a robots.txt and is used ONLY if fetcher.threads.per.queue is
set to 1.

• http.agent.name: This field must not be empty, as this is the HTTP ’User-Agent’
request header.

• http.agent.version: A version string to advertise in the User-Agent header.

• http.agent.description: Further description of our bot- this text is used in the
User-Agent header. It appears in parenthesis after the agent name.

• http.useHttp2: If true try HTTP/2 and fall-back to HTTP/1.1 if HTTP/2 not sup-
ported.

• http.redirect.max: The maximum number of redirects the fetcher will follow
when trying to fetch a page. If set to negative or 0, fetcher won’t immediately
follow redirected URLs, instead it will record them for later fetching.

• http.content.limit: The length limit for downloaded content using the http/https
protocols, in bytes. If this value is non-negative (≥ 0), content longer than it will
be truncated; otherwise, no truncation at all.

• db.ignore.external.links: If true, outlinks leading from a page to external hosts
or domain will be ignored. This is an effective way to limit the crawl to include
only initially injected hosts or domains, without creating complex URLFilters.

• ftp.keep.connection: Whether to keep ftp connection. Useful if crawling same
host again and again. When set to true, it avoids connection, login and dir list
parser setup for subsequent URLs. If it is set to true, however, you must make
sure (roughly):
(1) ftp.timeout is less than ftp.server.timeout
(2) ftp.timeout is larger than (fetcher.threads.fetch * fetcher.server.delay)
Otherwise there will be too many “delete client because idled too long” messages
in thread logs.

• indexer.max.title.length: The maximum number of characters of a title that are
indexed. A value of -1 disables this check.

• file.content.limit: The length limit for downloaded content using the
file://protocol, in bytes. If this value is non-negative (≥ 0), content longer than it
will be truncated; otherwise, no truncation at all.

Appendix B: project classes

Main.java

1 package com.example.demo;
2 import org.apache.kafka.clients.admin.NewTopic;
3 import org.springframework.boot.SpringApplication;
4 import org.springframework.boot.autoconfigure.

SpringBootApplication;
5 import org.springframework.context.annotation.Bean;
6 import org.springframework.kafka.annotation.KafkaListener;
7 import org.springframework.kafka.config.TopicBuilder;
8

9 @SpringBootApplication
10 public class DemoApplication {
11

12 public static void main(String[] args) {
13 SpringApplication.run(DemoApplication.class, args);
14 }
15 }

Repository.java

1 package com.example.demo.repository;
2

3 import org.springframework.data.mongodb.repository.
MongoRepository;

4 import org.springframework.stereotype.Repository;
5

6 import com.example.demo.models.Page;
7

8 @Repository
9 public interface MongoDBRepository extends MongoRepository<Page,

String> {
10 }

The Lombok library was employed to mitigate the need for repetitive and verbose
code. The integration of Lombok into the project, facilitated by utilizing Maven as the
build tool, involved including the corresponding Lombok dependency within the project’s
pom.xml file.

Lombok dependency
1 <dependencies>
2 <dependency>
3 <groupId>org.projectlombok</groupId>
4 <artifactId>lombok</artifactId>
5 <version>1.18.26</version>
6 <scope>provided</scope>
7 </dependency>
8 </dependencies>

Page.java
1 package com.example.demo.models;
2 import org.springframework.data.annotation.Id;
3 import org.springframework.data.mongodb.core.mapping.Document;
4 import org.springframework.data.mongodb.core.mapping.Field;
5 import lombok.Data;
6 import lombok.NoArgsConstructor;
7

8 @Data
9 @NoArgsConstructor

10 @Document(collection = "pages")
11 public class Page {
12 @Id
13 private String id;
14

15 @Field("search")
16 private String search;
17

18 @Field("tstamp")
19 private String tstamp;
20

21 @Field("segment")
22 private String segment;
23

24 @Field("digest")
25 private String digest;
26

27 @Field("host")
28 private String host;
29

30 @Field("boost")
31 private String boost;
32

33 @Field("title")
34 private String title;
35

36 @Field("url")
37 private String url;

38

39 @Field("content")
40 private String content;
41

42 }

References

Castillo, C. (2005). Effective web crawling. page 55–56. Association for Computing
Machinery.

Confluent (2022). What is kafka? https://www.confluent.io/
what-is-apache-kafka. Accessed: 2022-08-18.

Donovan, M. (2021). A web crawler for automated document retrieval in health policy.

Gonzaga, F. B. (2022). Searchonmath. https://www.searchonmath.com/. Ac-
cessed: 2022-08-18.

Gordon, M. and Pathak, P. (1999). Finding information on the world wide web: the
retrieval effectiveness of search engines. volume 35, pages 141–180.

HTTrack (2023). https://www.httrack.com/html/fcguide.html. Ac-
cessed: 2023-02-15.

Jansson, J., Uba, K., and Karo, J. (2020). Labor gone digital (digifacket)! experiences
from creating a web archive for swedish trade unions. volume 7, page 19.

Kausar, M. A., Dhaka, V., and Singh, S. K. (2013). Web crawler: a review. volume 63.
Foundation of Computer Science.

Khan, S. and Mane, V. (2013). Sql support over mongodb using metadata. volume 3,
pages 1–5. Citeseer.

Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A distributed messaging system for
log processing. In Proceedings of the NetDB, volume 11, pages 1–7.

Lopez, L. A., Duerr, R., and Khalsa, S. J. S. (2015). Optimizing apache nutch for domain
specific crawling at large scale. In 2015 IEEE International Conference on Big Data
(Big Data), pages 1967–1971.

Nutch, A. (2023). https://cwiki.apache.org/confluence/display/
nutch. Accessed: 2023-02-15.

Sharma, M. and Tribhuvan, P. P. (2021). Smart crawler. volume 12.

Similarweb (2022). https://www.similarweb.com/pt/website/google.
com/#overview. Accessed: 2022-08-17.

Tan, M. and Lan, H. (2019). Analysis and improvement of chinese index technology of
open source search engine nutch. In Journal of Physics: Conference Series, volume
1176, page 022032. IOP Publishing.

TutorialsTeacher (2022). What is mongodb? https://www.tutorialsteacher.
com/mongodb/what-is-mongodb. Accessed: 2022-08-18.

Yadav, M. and Goyal, N. (2015). Comparison of open source crawlers-a review. volume 6,
pages 1544–1551.

Yu, L., Li, Y., Zeng, Q., Sun, Y., Bian, Y., and He, W. (2020). Summary of web crawler
technology research. In Journal of Physics: Conference Series, volume 1449, page
012036. IOP Publishing.

