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Abstract
The islands model is a co-evolutionary framework for developing evolutionary algo-
rithms. In this model, we have two or more islands, and every island contains a differ-
ent population that evolves semi-isolated from the others, exchanging solutions among
them periodically through a migration operator. This work performs a robust and ex-
tensive evaluation of this model. We evaluate implementations ranging from two to
fifty islands. Furthermore, we evaluate this model using five different evolutionary
algorithms: the genetic algorithm, the ant colony optimization, the particle swarm
optimization, the differential evolution, and the CLONAL algorithm, whereas every
algorithm can be employed to evolve none, one, or more islands. This evaluation is
carried out using the 2015 IEEE Congress of Evolutionary Computation’s Black Box
Optimization Competition as test functions. A statistical analysis of our experimental
data demonstrated that the use of several islands is beneficial to the results of the evo-
lutionary algorithms. In fact, we were able to infer that the use of 8, 10, or more islands
led to the best results found.
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1 Introduction

The islands model is a simple and effective framework for developing co-evolutionary
heuristics. In this framework, there are two or more islands, and each island denotes
a different population. These islands evolve semi-isolated from each other, whereas
the only communication mechanism is a migration operator that exchanges solutions
among the islands. Algorithms developed through this framework can be easily im-
plemented in distributed and parallel environments (Whitley et al., 1998).

We denote a heuristic developed using this framework as an island-based evo-
lutionary algorithm (IBEA). The main difference between an IBEA and a single-
population evolutionary algorithm (SPEA) is the separation of individuals into islands,
also denominated subpopulations. Islands interact with each other through migration,
spreading genetic information of individuals among the whole population. Without
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this migration operator, an IBEA is equivalent to a set of separate runs of SPEA (Skolicki
and De Jong, 2005).

An island pm is a set of individuals. An IBEA uses a set P = {p1, p2, . . . , pm} of m
islands, whereas pim is the i-th individual of island pm. Thus, we argue that P denotes
the set of all individuals of an IBEA and that |P | =

∑m
i=1 |pi|. In the remaining of this

paper, we will employ the terms population, subpopulation, and island as synonymous,
and they will refer to a single island (or population) pm ∈ P .

In addition to the common parameters of the evolutionary algorithms, an IBEA
also has the migration rate (mr), the migration size (ms), and the number of islands
(m). Parameter mr represents the interval of generations between two migration pro-
cesses, and ms denotes the total number of individuals that migrate each mr genera-
tion. Both mr, ms and m have great influence on IBEA convergence (Tomassini, 2005;
Da Silveira et al., 2023).

Algorithm 1 shows a pseudo-code of a general IBEA. First, it initializes all islands
pi ∈ P from lines 1 to 3. Next, each island evolves for mr generations from lines 5 to
9. Then, the migration operator is applied in line 10. The algorithm executes until a
stopping criterion is met from lines 4 to 11). Finally, the best solution found among
all islands is selected and returned in line 12 and the algorithm is ended. One can see
that this is a synchronous IBEA implementation. A distributed version of IBEA can be
easily developed by computing the evolutionary process from lines 5 to 9 in parallel.
Details regarding this parallel implementation can be found in Alba (2005) and Luque
and Alba (2011).

Algorithm 1 The islands model framework

1: for i← 1 to m do ▷ loop for all islands pi ∈ P
2: initialize island pi
3: end for
4: while stopping criterion is not met do
5: for j ← 1 to mr do ▷ loop for a total of mr generations
6: for i← 1 to m do ▷ loop for all islands pi ∈ P
7: evolve one generation of the island pi
8: end for
9: end for

10: apply the migration operator
11: end while
12: return best individual of all islands
13: end

Our work uses two different migration operators: (i) the island-migration; and
(ii) a neighborhood-based migration operator (Tomassini, 2005). The island-migration
is exemplified in Figure 1 for an IBEA with m = 4. We can see from this figure that an
individual from population pi can migrate to any population pi ∈ P , also being able to
stay in their current population.

The neighborhood-based operator in our algorithm, on the other hand, defines a
subset of neighbour islands that are connected. This connection is set randomly and a
total of max{m− 1, 4} connections are set by the operator before the start of the evolu-
tionary process. Thus, in this operator, an individual can only migrate between these
connected islands.

This paper studies the co-evolutionary islands model as described below. We per-
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Figure 1: The islands-migration operator. An individual can freely migrate among all
subpopulations

form an extensive experimental study with IBEAs with up to 50 islands. Furthermore,
the IBEAs evaluated in this work employ from 1 to 5 different evolutionary algorithms:
a genetic algorithm (GA) (Reeves, 2010), a differential evolution algorithm (DE) (Storn
and Price, 1997), a particle swarm optimization algorithm (PSO) (Kennedy and Eber-
hart, 1995), an ant colony optimization algorithm (ACO) (Socha and Dorigo, 2008), and
a clonal selection algorithm (CLONAL) (De Castro and Von Zuben, 2000). The devel-
oped algorithms are evaluated using the test functions of the 2015 IEEE CEC competi-
tion on learning-based real-parameter single objective optimization (Liang et al., 2014).

The remainder of this paper is organized as follows. Section 2 reviews the re-
lated work. Next, Section 3 presents the benchmark objective functions along with
the solution representation for this problem, while Section 4 presents the five different
algorithms employed in our IBEA. Then, Section 5 analyzes the developed IBEA, pre-
senting and analyzing a robust computational experiment with IBEAs ranging from 2
to 50 islands. Finally, Section 6 draws the concluding remarks of our paper.

2 Related work

Several studies on IBEA can be found in the literature. The work developed by Lässig
and Sudholt (2013) demonstrated the impact of migration parameters in the solution’s
diversity and convergence of IBEA. It indicated that an IBEA with a high migration
rate is similar to an SPEA. Moreover, a small migration rate can retard the evolutionary
process, such that a greater number of function evaluations are needed to achieve good
solutions. Furthermore, it also exposes that an IBEA with a dense-connected topology
achieves better results with larger migration intervals, while a small migration interval
is indicated to be used with a sparse-connected topology.
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A concept of migration through copies is described by Schwehm (1996). According
to him, when an individual migrates from subpopulation pi to a subpopulation pj , it
continues to exist at subpopulation pi. In contrast, the work developed by Martin et al.
(1997) presented a process that, when an individual migrates from subpopulation pi
to a subpopulation pj , the individual no longer exists in subpopulation pi. However,
do not exist any work in the literature that compares these two different migration
assimilation strategies.

An IBEA without the migration operator, being all subpopulations isolated from
each other, was studied and compared to SPEA in Cantú-Paz and Goldberg (2003). It
shows that an IBEA, when all subpopulations are isolated from each other, is equivalent
to multiple runs of an SPEA. Computational experiments have reported that a single
run of an SPEA without population subdivision can outperform an IBEA with isolated
islands for a set of additively separable functions.

A work that deals with different migration policies was developed by Alba and
Troya (2000). It showed that migration policies suffer great influence from migration
topologies. Another work that dealt with different migration policies and their effects
on IBEA was presented by Cantú-Paz (2001). It showed various migration policies and
studied their impact on IBEA convergence. It showed that choosing random individu-
als for migration does not increase the selection pressure. Thus, it can be appropriate
for studying other migration parameters (Skolicki and De Jong, 2005).

Another work that compared various migration policies was developed by Mag-
alhães et al. (2015). It presented an IBEA with ring topology and showed that migra-
tion policies based on elitist strategies are efficient in solving simple problems. Besides,
complex problems are better handled by migration policies based on similarities and
fitness comparisons.

A comparison between different migration topologies was developed by Sekaj
(2004). That work compared the most often used topologies, such as the ring, array,
grid, star, and fully-connected topologies. It showed that models with sparse connec-
tions have greater solution diversity, as they spread the individuals’ genetic informa-
tion slowly to the whole population. On the other hand, densely connected topologies
with a high migration rate behave like a single population.

Skolicki and De Jong (2005) studied the influence of migrations size and interval
on IBEA. The authors demonstrated that IBEA algorithms are very sensitive to these
two variables. Their work showed that a small migration interval should be avoided
to achieve better results. Besides, this work also correlated a high migration size with
IBEA’s performance degradation.

Tomassini (2005) presented various models of distributed evolutionary algorithms.
It presented IBEA, lattice cellular models, coevolutionary models, and some other non-
conventional models. Various parameters of these models were presented.

The speed at which good solutions of an island spread through the population
was studied by Alba and Luque (2005). Computational experiments performed with
different migration intervals, and migration size demonstrated how to adjust these pa-
rameters for different topologies.

Several IBEA’s migration topologies were studied and compared by Ruciński et al.
(2010). Besides the migration topologies, this work varied the number of islands, us-
ing two IBEA to optimize three different mathematical functions. It presented various
migration topology parameters, such as the degree of connectivity and the clustering
coefficient, demonstrating that these topologies’ parameters have a great influence on
IBEA.
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A multicultural migration policy was developed by Araujo and Merelo (2011). An
individual can migrate from population pi ∈ P to population pj ∈ P if and only if
its genotype greatly differs from the population pj average genotype. Thus, it can in-
crease the solution’s diversity in all subpopulations. This policy has shown to be more
effective than others when one has small-sized subpopulations.

A method for analyzing the runtime of parallel evolutionary algorithms was pre-
sented by Lässig and Sudholt (2014). The presented method can be used to estimate the
upper bound of IBEA’s running time through the generalization of its single-population
version’s running time. This method was validated through computational experi-
ments performed to optimize two pseudo-Boolean functions. Running times’ upper
bound for IBEA with ring topology, hypercube topology, torus graph topology and
fully-connected topology were drawn.

A framework for developing IBEA for multi-objective optimization was presented
by Vargas et al. (2015). It showed that subpopulation dynamics can greatly improve
Evolutionary Algorithms’ results in the case of multi-objective problems. Furthermore,
it compared IBEA with other distributed models of SPEA, showing that IBEA overcame
these models for multi-objective optimization.

Mambrini and Sudholt (2015) proposed two adaptive migration schemes for IBEA.
These schemes adjust the migration interval by analyzing whether islands have man-
aged to find improved solutions since the last migration. If an island finds an improved
solution, its migration interval decreases to spread this solution to the whole popula-
tion. On the other hand, if an island does not find an improved solution since the last
migration, this island’s migration interval increases to avoid large communication ef-
fort (when dealing with parallel hardware). Computational experiments showed that
both frameworks could reduce the communication effort compared to a traditional mi-
gration scheme. A similar work was developed by Osorio et al. (2011, 2013). However,
their algorithms only ran for a fixed number of generations.

Duarte et al. (2021) proposed an islands model based on stigmergy, a natural phe-
nomenon by which groups of individuals develop organized and cooperative behavior
to perform tasks and increase their survival. In their model, the migration rates be-
tween islands can change during the evolutionary process, being adapted to benefit
the best populations. This stigmergy island model was shown to outperform the tra-
ditional islands model. Later, Duarte et al. (2022) improved the stigmergy model by
distributing constraint-handling methods across the several islands of their model.

Skakovski and Jedrzejowicz (2019) proposed an IBEA with no migration operator
composed of several DE algorithms. In their model, every DE algorithm implements
a decloning operator (Jedrzejowicz and Skakovski, 2016) that dynamically changes
its population size. Computational experiments performed by the authors demon-
strated that the IBEA implemented with the decloning operator outperforms another
implemented using the classical DE algorithm in solving a scheduling problem. Later,
Skakovski and Jedrzejowicz (2022) extended their previous work by demonstrating
that the previously proposed IBEA algorithm outperforms the classical one even if no
migration operator is applied.

Da Silveira et al. (2019) contrasted an IBEA constructed with several GA with its
SPEA variant for solving bioinformatics problems. The authors demonstrated that the
IBEA implementation could find better results than the SPEA, considering its running
time and solution quality.

Silva et al. (2017) proposed an IBEA with multiple DE algorithms for solving a
calorie-restricted diet problem. In their implementation, every island contained the
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same algorithm but with different parameters. Computational experiments demon-
strated that their IBEA could obtain higher-quality solutions than a DE. Later, Xavier
et al. (2023) expanded this work by developing an IBEA with multiple GA and DE al-
gorithms. This latter algorithm outperformed all other algorithms in the literature in
solving the calorie-restricted diet problem.

Da Silveira et al. (2023) evaluated several IBEA implemented using multiple GAs
over different migration topologies. The authors evaluated many parameters of the
algorithms, including the comparison between synchronous and asynchronous migra-
tion, the migration size, and the migration interval. Their results indicate the best pa-
rameter setting for each migration topology when solving four NP-hard combinatorial
optimization problems.

Da Silveira et al. (2021) evaluated an IBEA that employs three different algorithms
within its islands: i) a GA; ii) a DE; and iii) a PSO. The authors demonstrated that the
use of multiple algorithms is beneficial in terms of solution quality in comparison to an
IBEA implemented with several GAs.

Our paper extends the work of Da Silveira et al. (2021) using the island-migration
model of Tomassini (2005). In addition to the three algorithms employed by Da Silveira
et al. (2021), we also evaluate a CLONAL algorithm and an ACO algorithm within
IBEA. Furthermore, we extend the evaluation of these algorithms for IBEAs with up to
50 islands.

3 The benchmark objective functions and their computational
representation

The proposed algorithms were evaluated using 15 different global optimization prob-
lems, here denoted as benchmark objective functions. These benchmark objective func-
tions were previously employed in the 2015 IEEE CEC competition on learning-based
real-parameter single objective optimization (Liang et al., 2014).

Table 1 presents the employed functions. The first and second columns respec-
tively present the function’s number and name. The third column gives the number of
dimensions d of the benchmark objective function. Finally, the fourth column denotes
the optimal value of the objective function. One can observe that the value of d varies
in the set {10, 30} for all benchmark objective functions. The higher the value of d, the
harder to solve the benchmark objective function.

We denote a solution for a benchmark objective function as an individual pim of an
IBEA. For the problem we solved, a solution is represented as a d-dimensional vector
of real numbers in the interval [−100, 100]. Figure 2 represents a solution for d = 10.
We denote each position of this vector as a gene. Furthermore, we denote the value of
applying solution pim in solving a proposed benchmark objective function as it fitness
value f(pim).

Figure 2: Solution representation for a benchmark optimization function with d = 10

4 Algorithms employed within IBEA

Our work implements and evaluates a synchronous IBEA as described in Algorithm 1.
As stated in previous sections, we implemented five different algorithms within IBEA.
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Table 1: Benchmark objective functions evaluated in this work

Number Function’s name d fmin

F1 Rotated Bent Cigar Function 10, 30 100
F2 Rotated Discus Function 10, 30 200
F3 Shifted and Rotated Weierstrass Function 10, 30 300
F4 Shifted and Rotated Schwefel’s Function 10, 30 400
F5 Shifted and Rotated Katsuura Function 10, 30 500
F6 Shifted and Rotated HappyCat Function 10, 30 600
F7 Shifted and Rotated HGBat Function 10, 30 700
F8 Shifted and Rotated Expanded 10, 30 800
F9 Shifted and Rotated Expanded Scaer’s F6 Function 10, 30 900

F10 Hybrid Function 1 (N = 3) Rastrigin 10, 30 1000
F11 Hybrid Function 2 (N = 4) Rastrigin 10, 30 1100
F12 Hybrid Function 3 (N = 5) 10, 30 1200
F13 Composition Function 1 (N = 5) 10, 30 1300
F14 Composition Function 2 (N = 3) 10, 30 1400
F15 Composition Function 3 (N = 5) 10, 30 1500

We opted for a traditional implementation of these algorithms that does not employ
sophisticated methods or operators. They are described below.

4.1 Genetic Algorithm

Holland et al. (1992) proposed the GA, inspired by the evolution theory presented by
Charles Darwin. GA updates its population based on the crossing, mutation, and evo-
lution operators. It was initially proposed for binary representation of the individuals.
However, several variants proposed in the literature extended their application to deal
with real-valued variables (Reeves, 2010), as in this work.

Algorithm 2 shows the pseudo-code of our GA implementation. First, the popu-
lation is initialized in line 1 and evaluated in line 2. Then, the loop from lines 3-8 is
performed until a stopping criterion is met. Every iteration of this loop is denominated
as a generation of the GA. On every iteration, the selection, crossing, mutation, and evo-
lution operators are applied sequentially. Finally, the best individual found by GA is
returned in line 9.

Algorithm 2 The Genetic Algorithm (GA)
1: Population initialization
2: Population evaluation
3: while stopping criterion is not met do
4: Selection
5: Crossing
6: Mutation
7: Evolution
8: end while
9: return the best individual found
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4.1.1 Selection operator
The selection operator obtains one or two random individuals to undergo the evolu-
tion process. First, it selects a random individual from population pi using a roulette
algorithm (Reeves, 2010). Then, it generates a pseudo-random number ι using a real
uniform distribution U(0, 1). If ι is smaller or equal to the crossing rate parameter, then
this previously selected individual is used as input for the mutation operator, thus not
applying the crossing operator. Otherwise, it selects a different individual using the
same roulette algorithm and employs both individuals as input for the crossing opera-
tor.

4.1.2 Crossing operator
The GA employs the classic 2-point crossover operator (Reeves, 2010). This operator
mixes the genes of the selected individuals and creates a new individual. This new
individual will be used as input for the mutation operator.

4.1.3 Mutation operator
The mutation operator changes the value of a single gene of the previously generated
individual. The gene to be mutated is chosen using an integer uniform distribution
U(1, d) and its new value is generated in the same way as in the population initializa-
tion, that is, using a continuous uniform distribution U(−100, 100). This operation is
applied with a certain probability regulated by the parameter mutation rate.

4.1.4 Evolution operator
The previous operators are applied until the number of generated individuals is equal
to the original population size. The selection operator constructs a temporary pool of
solutions containing the original population and all of the generated individuals. Then,
it selects half of them to undergo to the next generation.

This selection process simply sorts the temporary pool of solutions according to
their fitness. Then, the individuals with the best fitness values are selected and the
others are discarded. One may observe that this operator preserves the original popu-
lation’s size.

4.2 Differential Evolution

The DE algorithm was first proposed by Storn and Price (1997). It is a stochastic evolu-
tionary algorithm being first proposed to deal with real-valued variables. The pseudo-
code of DE is shown in Algorithm 3. First, the population is initialized in line 1 and
evaluated in line 2. Next, the loop from lines 3-7 is performed until a stopping crite-
rion is met. Every iteration of this loop is a generation of the DE. In every generation,
mutation, crossing, and selection operators are applied sequentially. Finally, the best
individual found by DE is returned in line 8.

4.2.1 Mutation operator
The mutation operator is applied using three different individuals pim, pjm, and pkm from
the population. These three individuals are randomly chosen with the same probability.
The mutation operator consists of modifying the genes of pim by the vector difference
between the chromosomes of pjm and pkm multiplied by a perturbation factor F ∈ [0, 2],
which is a parameter of DE. This operator creates a new individual c and can be de-
scribed as

c = pim + F · (pjm × pkm).

This new individual c will be used as input for the crossing operator.
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Algorithm 3 The Differential Evolution (DE)
1: Population initialization
2: Population evaluation
3: while stopping criterion is not met do
4: Mutation
5: Crossing
6: Selection
7: end while
8: return the best individual found

4.2.2 Crossing operator
The crossing operator selects a random individual plm from the population with a uni-
form probability such that plm ̸= pim ̸= pjm ̸= pkm and combines plm with c. The crossing
operator constructs a new individual a by randomly selecting the genes from plm and c
with a crossing probability β ∈ [0, 1]. For every gene in [1, . . . , d], it generates a pseudo-
random number using a real uniform distribution U(0, 1). If the generated number is
smaller or equal to the crossing probability β, then the i-th gene of individual a will be
copied from that of c. Otherwise, the i-th gene of a will be the same as that of plm.

4.2.3 Selection operator
The selection operator of DE is carried out as the evolution operator of GA, as described
in Section 4.1.4.

4.3 Particle Swarm Optimization

The PSO is an evolutionary algorithm based on the concept of swarms of parti-
cles (Wang et al., 2018). It tries to mimic the intelligent collective behavior of some
animals such as birds, fishes, and insects (Kennedy and Eberhart, 1995). These swarms
collaborate to locate food, with each member adjusting their search pattern based on
their own learning experiences and those of other members (Wang et al., 2018). In this
algorithm, the particles are located in a d-dimensional space, and the position of a par-
ticle corresponds to its fitness value.

The pseudo-code of PSO is shown in Algorithm 4. Initially, all particles are initial-
ized in line 1. Then, the position of all particles is stored as its best position in line 2 and
the best global position is stored in line 3. Then, the loop from lines 4-15 is performed
until a stopping criterion is met. We denote each iteration of this loop as a genera-
tion for the PSO. In every generation, we individually update the particle’s speed in
line 6 and the particles’s position in line 7. Then, the best position for the particle and
the global best position are updated in lines 8-13. Finally, the global best position is
returned in line 16.

4.3.1 Updating the paticle’s speed and position
Let vij be the speed of a particle j in dimension i. Additionally, let xij denotes the
position of particle j at dimension i. We update the particle’s speed as

vij = vij · w + c1 · r1 · (pbestij − xij) + c2 · r2 · (gbesti − xij),

where pbestij corresponds to the best position for the particle and gbesti is the global best
position at dimension i. Furthermore, w is a fixed value that corresponds to the inertia
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Algorithm 4 Particle Swarm Optimization (PSO)
1: Initialize particle positions and velocities
2: Initialize the best position for each particle
3: Initialize the global best position
4: while stopping criterion is not met do
5: for for every particle do
6: Update particle’s speed
7: Update particle’s position
8: if fitness of the particle is better than its best position then
9: Update the best position of the particle

10: end if
11: if fitness of the particle is better than the global best position then
12: Update the global best position
13: end if
14: end for
15: end while
16: return global best solution

and c1, c2 are the social components of PSO, which are real-valued parameters in the
interval [0.1, 3].

After the speed update, we update the particle’s position as

xij = vij + xij .

4.4 Ant Colony Optimization

The ACO is inspired by the foraging behavior of ant colonies (Dorigo and Stützle, 2019).
Initially, ants move randomly in search of food, creating multiple routes. Then, based
on food quality and quantity, they carry food back, leaving pheromone trails. The
probability of selecting a path depends on pheromone concentration and evaporation
rate.

The pseudo-code of ACO is shown in Algorithm 5. Initially, the pheromone trails
are initialized in line 1. Then, the initial position of all ants defined in line 2 and the
best fitness value is stored in line 3. Then, the loop from lines 4-9 is performed until
a stopping criterion is met. We denote each iteration of this loop as a generation for
the ACO. In every generation, we individually update the ants position in line 5 and
evaluates their fitness line 6. Then, the pheromone trails are updated in line 7, and the
ant with the best fitness value is stored in line 8. Finally, the ant with the best fitness
value, across all generations of the ACO, is returned in line 10.

We implemented the continuous ACO algorithm as described by Bilchev and
Parmee (1995).

4.5 Clonal Selection Algorithm

The CLONAL is an evolutionary algorithm inspired by the selection principle of im-
munobiologic systems (De Castro and Von Zuben, 2000). It is based on the idea that
each living being will be exposed to the same antigen repeatedly, always forming an-
tibodies capable of reacting against that antigen. Combining this idea with concepts
of evolutionary algorithms, the implementation of CLONAL relies on a population of
antibodies (solutions) that, with each iteration, will be cloned and modified. After their
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Algorithm 5 Ant Colony Optimization algorithm (ACO)
1: Initialize the pheromones
2: Define the initial position of the ants
3: Stores the ant with the best fitness value
4: while stopping criterion is not met do
5: Update the position of the ants
6: Evaluate the fitness of the ants
7: Update the pheromone trails
8: Stores the ant with the best fitness value
9: end while

10: return the ant with the best fitness value

modifications, the clones best prepared to deal with the antigens are selected to be part
of the next population (Carvalho and Ribeiro, 2019).

Algorithm 6 shows the pseudo-code of our CLONAL implementation. Initially, all
antigens are randomly initialized in line 1. Then, the antigen with the best fitness value
is stored in line 2. The loop from lines 3-8 corresponds to a generation of CLONAL. In
every generation, we clone (line 4), hypermutate (line 5), evaluate (line 6), and select
(line 7) the antigens that will undergo to the next generation. Finally, the best antigen
found in returned in line 9.

Algorithm 6 The Clonal Selection Algorithm (CLONAL)
1: Initialize the antigens
2: Stores the antigen with the best fitness value
3: while stopping criterion is not met do
4: Clone
5: Hypermutate
6: Evaluate
7: Selection
8: end while
9: return the best antigen found

4.5.1 Cloning operator
A clone is an exact copy of an antigen. The cloning operator creates a vector of clones for
every antigen of the population. The number of clones is defined by the cloning scale,
which is a parameter of the algorithm, and is the same for every antigen of CLONAL.

4.5.2 Hypermutation operator
The hypermutation operator applies mutations in the previously created clones. Our
hypermutation operator is the proportinal hypermutation operator (Carvalho and Ribeiro,
2019). This operator ranks all original antigens of the population according to their
fitness values. Then, the number of mutations applied to them is inversely proportional
to its ranking. Therefore, we apply a smaller number of mutations to the antigens with
the best fitness value and a larger number of mutations to antigens with the worst
fitness values. It guarantees that CLONAL intensifies the search around good-quality
antigens, while low-quality antigens are employed to explore the search space.
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A mutation of CLONAL is the same of the GA’s mutation as described in Sec-
tion 4.1.3. The clones of the antigen with the best fitness value has only one variable
mutated. Conversely, the clones of the antigen with the worst fitness value are mutated
d times, where d is equal to the number of dimensions of the problem, as presented in
Section 3.

4.5.3 Selection operator
The selection operator is applied individually for every antigen and their clones. It
chooses, among the original antigen and his mutated clones, the one with the best
fitness value. This selected solution goes to the next generation, while all others are
discarded. This operator guarantees that the number of antigens do not vary during
the execution of CLONAL.

5 Computational experiments

The computational experiments were carried out on a personal computer using the
Ubuntu 22.04.1 operating system. The experiments ran on a single core of an Intel i5-
12500 processor with 4.6 Ghz clock and 16 Gb of RAM. All algorithms were developed
from scratch in C and compiled using the GNU GCC 11.3.0. Additionally, all exper-
iments were repeated 30 times with different seeds to the Mersene-Twister pseudo-
random number generator (Matsumoto and Nishimura, 1998) to obtain the average fit-
ness and its standard deviation. We set three different stopping criteria: (i) a maximum
running time of 10 seconds; (ii) a total of 5000000 objective function evaluations; and
(iii) a total of 1000 generations without improvement of the objective function value.

5.1 Hyperparameter optimization for each algorithm

In this first experiment, we optimize the parameters for the 5 algorithms described in
Section 4. This experiment was carried out separately for each algorithm with a single
population, i.e., their SPEA implementations. The objective was to find the best set of
parameters for the algorithms to be employed in the remaining experiments.

The hyperparameters optimization was carried out using benchmark objective
functions F3, F5, and F12. These three functions were randomly selected and removed
from the remaining experiments to prevent the overfitting of the algorithms to the un-
derlying optimization problems.

The iRace package (López-Ibáñez et al., 2016) was employed for this experiment.
This package offers a well-known suite for automatic algorithm configuration in opti-
mization and learning tasks. We used the Iterated Race method available in the iRace
package developed in R programming language.

Table 2 shows the results of this experiment. The first column presents the algo-
rithm’s name, while the second column gives the name of the parameter being opti-
mized. The third column shows the considered interval, i.e., the minimum and max-
imum value evaluated for each parameter. Finally, the fourth column presents the re-
sults obtained through the application of the Iterated Race procedure. As these are the
best parameter settings for each algorithm individually, they will be carried out in the
remaining experiments.

5.2 Evaluation of the evolutionary algorithms

The second experiment separately evaluates the five evolutionary algorithms imple-
mented in this work. The objective is simply to assert their performance in optimiz-
ing the proposed benchmark objective functions. This experiment was carried out in
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Table 2: The hyperparameter optimization experiment

Algorithm Parameter Test interval Best value

GA
Population size [30, 10000] ∈ N 3229
Mutation rate [0, 1] ∈ R 0.13
Crossing rate [0, 1] ∈ R 0.08

DE
Population size [30, 10000] ∈ N 1665
Mutation rate [0, 1] ∈ R 0.05

Pertubation factor [0, 2] ∈ R 0.82

PSO
Population size [30, 10000] ∈ N 9111

Social component 1 [0.1, 3] ∈ R 0.61
Social component 2 [0.1, 3] ∈ R 0.74

ACO Population size [30, 10000] ∈ N 2828
Number of candidates [3, 30] ∈ N 20

CLONAL Population size [30, 10000] ∈ N 46
Number of clones [2, 100] ∈ N 72

the remaining 12 benchmark objective functions described in Table 1 excluding those
employed in the first experiment. The objective was to assess the performance of the
five developed algorithms in solving the proposed benchmark objective functions. Al-
though this experiment not being the objective of our work, the obtained results will
be employed in the discussion of our final and most important experiment given in
Section 5.4.

The result of this experiment is given in Table 3. The first column shows the num-
ber of the benchmark objective function. The second and third columns present the
results for the GA, whereas the second column (Average) gives the average result for
20 repetitions of the algorithm using different seeds for the pseudo-random number
generator and the third column (SD) displays the standard deviation of this same data.
The remaining columns present the same data for the DE, the PSO, the ACO, and the
CLONAL algorithms. Every line summarizes the results for d = {10, 30}. Additionally,
the best result in every line, lexicographically considering the average result and the
standard deviation, is highlighted in bold.

Table 3: Comparison between the five proposed evolutionary algorithms

GA DE PSO ACO CLONAL

Average SD Average SD Average SD Average SD Average SD

F1 3.65× 107 1.38× 107 7.75 × 103 1.87× 103 9.31× 103 7.02× 103 1.92× 109 4.35× 108 1.69× 105 1.53× 105

F2 2.18× 103 4.99× 102 1.46× 103 5.78× 102 2.00 × 102 1.75× 10−2 1.62× 104 2.87× 103 5.35× 103 2.01× 103

F4 9.83× 102 1.09× 102 9.88× 102 3.17× 102 6.54× 102 1.18× 102 1.57× 103 8.60× 101 4.01 × 102 3.66× 10−1

F6 6.00× 102 3.84× 10−2 6.00× 102 4.85× 10−2 6.00 × 102 4.90× 10−2 6.02× 102 3.81× 10−1 6.00× 102 1.55× 10−1

F7 7.00× 102 6.32× 10−2 7.00× 102 4.45× 10−2 7.00 × 102 3.71× 10−2 7.13× 102 2.36 7.00× 102 3.06× 10−1

F8 8.04× 102 5.12× 10−1 8.02× 102 6.35× 10−1 8.01 × 102 3.78× 10−1 1.16× 103 2.17× 102 8.04× 102 1.36
F9 9.03× 102 1.28× 10−1 9.03× 102 2.14× 10−1 9.02 × 102 3.68× 10−1 9.03× 102 1.46× 10−1 9.03× 102 3.37× 10−1

F10 3.36× 103 5.66× 102 1.63× 103 2.65× 102 1.59 × 103 2.12× 102 1.75× 104 6.83× 103 7.23× 103 4.50× 103

F11 1.10× 103 2.62× 10−1 1.10× 103 3.43× 10−1 1.10 × 103 8.32× 10−1 1.11× 103 5.66× 10−1 1.10× 103 9.76× 10−1

F13 1.62× 103 5.44× 10−1 1.62× 103 1.16 1.62 × 103 3.49× 10−1 1.65× 103 1.07× 101 1.62× 103 7.54× 10−1

F14 1.59× 103 2.21 1.59 × 103 2.37 1.59× 103 5.15 1.60× 103 1.87 1.59× 103 3.85
F15 1.92× 103 3.31 1.91× 103 4.33× 10−1 1.90 × 103 9.25× 10−1 2.01× 103 1.90× 101 1.91× 103 8.56× 10−1

One can see from Table 3 that the PSO outperformed the other algorithms for 9
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out of the 12 evaluated benchmark objective functions. Besides that, DE obtained the
best results for the benchmark objective function F14, while CLONAL outperformed
the other algorithms for the function F4. Therefore, it indicates that the PSO is the best
among the five evaluated algorithms in optimizing the proposed benchmark objective
functions.

To assess this observation, an experimental analysis of the data was carried out
following the statistical methodology of Garcia and Herrera (2008). This methodology
has three steps, as described below. All steps assume a significance level α = 0.05, i.e.,
the null hypothesis is rejected if a p-value smaller or equal to 0.05 is obtained.

In the first step, a Shapiro-Wilk normality test is applied to verify if the average
fitness values obtained by the algorithms follow a normal distribution. The Shapiro-
Wilk test found a p-value of 0.001 for all algorithms, thus indicating that the data does
not follow a normal distribution. Therefore, a non-parametrical statistical test will be
employed in the next steps.

The second step was to apply a Friedman’s Test to verify whether the average fit-
ness values of one of the heuristics statistically differ from that of another. The null
hypothesis is that all five algorithms achieve the same average fitness value. The input
data for the Friedman’s test is ranked according to the methodology proposed by Car-
valho (2019). The Friedman’s test obtained a p-value of 0.002, thus rejecting the null
hypothesis and indicating that exist a significant difference between the average fitness
values of, at least, two of the algorithms evaluated in this work.

In the third step, we applied a post-hoc test for Friedman’s, namely the Nemenyi’s
test (also known as Nemenyi–Damico–Wolfe–Dunn’s test). This statistical test com-
pares the results of multiple algorithms and evaluates the pair of hypothesis{

H0 : µi ≤ µj

H1 : µi ̸= µj
, ∀(µi, µj) ∈W,

whereas W = {µGA, µDE, µPSO, µACO, µCLONAL}, such that µGA, µDE, µPSO, µACO, µCLONAL
are respectively the average ranking obtained by GA, DE, PSO, ACO, and CLONAL
in the second step. The null hypothesis (H0) affirms that the average rankings µi and
µj of all pairs of algorithms do not significantly differ from each other. Thus, the null
hypothesis affirms that all algorithms have similar average rankings. On the other
hand, the alternative hypothesis (H1) suggests that the average rankings given by an
algorithm µi statistically differ from those of another algorithm µj .

This post-hoc test rejected the null hypothesis and indicated that µPSO ≤ µj : j ∈
W \ µPSO. Thus, we can affirm that there exists a significant difference between the
average rankings of PSO and all other algorithms evaluated in this work. Finally, we
conclude that the PSO is the best among the evaluated heuristics in solving the pro-
posed benchmark objective functions.

5.3 Hyperparameter optimization for IBEA

The third experiment performs the hyperparameter optimization of our IBEA with up
to 50 islands. This IBEA employs one or more of the proposed algorithms as described
in Section 4 with their best parameter settings, as given in Table 2.

We individually optimized the hyperparameters of every IBEA from 2 to 50 is-
lands. Thus, for every value of m ∈ {2, 3, . . . , 50}, the hyperparameters optimized
were: (i) migration rate mr ∈ {1, 10}; (ii) the migration size ms ∈ {1, 50}; and (iii)
the chance of applying the island-migration operator im ∈ [0, 1]. In every migration
process, a random number υ is obtained using a real uniform distribution U(0, 1). If
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υ ≤ im, then the island-migration operator is applied. On the other hand, if υ > im,
the neighborhood-migration operator is applied. Therefore, the greater the value of im,
the greater the chance of applying the island-migration operator. Conversely, as smaller
the value of im, the greater the chance of applying the neighborhood-migration oper-
ator. This experiment was performed in the same 12 objective functions employed in
Section 5.2.

This hyperparameter optimization was performed considering every possible
combination with repetition of the 5 algorithms described in Section 4. Therefore, for
every value of m, the number of different combinations evaluated was(

m+ r − 1
r

)
,

where r = 5 is the number of considered algorithms. For every possible combination,
we optimized the parameters mr,ms, and im using the Iterated Race method available
in iRace package.

Table 4 presents the results of this hyperparameter optimization experiment. For
every value of m (columns 1 and 6), it presents the best value for mr (columns 2 and
7), the best value for ms (columns 3 and 8), and the best value for im (columns 4 and
9). Furthermore, the number of islands running each algorithm is shown in columns 5
and 10, whereas the first digit gives the number of GAs, the second digit presents the
number of DEs, while the third digit denotes the number of PSOs, the fourth digit gives
the number of ACOs, and the fifth digit represents the number of CLONALs.

It can be observed that, in general, PSO is the most employed algorithm in our
IBEAs. Across all values of m, PSO was the chosen algorithm for 422 islands, while the
GA, the DE, the ACO, and the CLONAL were respectively employed in 271, 202, 189,
and 190 islands. Furthermore, the PSO was the most employed algorithm for 31 out
of the 49 evaluated values of m. These results indicate that as better the algorithm in
solving the proposed problem, the higher the chances of it being selected for an island.
However, other algorithms are still needed, as these employ different evolutionary op-
erators that benefit the optimization process.

Figure 3 shows the value of im for every evaluated value of m and a linear re-
gression on this data. It can be observed that the value of im greatly varies across the
experiment. In fact, the average value for im is 0.517 with a standard deviation of 0.241.
Additionally, the linear regression y = −0.002x + 0.584 shows a decreasing tendency,
but with R2 = 0.022. This data suggests that the greater the number of islands, the
better the neighborhood-migration operator is in optimizing the proposed benchmark
objective functions.

5.4 Evaluation of IBEA with different number of islands

The fourth and last experiment determines the ideal number of islands to optimize the
proposed benchmark objective functions. The results of this experiment are summa-
rized in Table 5. The first column gives the number m of islands, while the second
through thirteenth columns present the average results for the different benchmark
objective functions. The results for the 12 evaluated benchmark objective functions (as
displayed in the second through thirteenth columns) represent the average of 30 runs of
IBEA using different seeds for the pseudo-random number generator. These numbers
were computed as the average deviation from the optimal solution of these benchmark
objective functions, given as

OPT −HEUR

OPT
,
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Table 4: The hyperparameter optimization experiment for multiple island sizes

m mr ms im algorithms m mr ms im algorithms

2 9 42 0.47773 1/0/1/0/0 27 9 33 0.38245 3/5/15/2/2
3 7 38 0.41116 1/0/2/0/0 28 9 43 0.92157 11/4/8/4/1
4 8 37 0.86306 1/0/2/0/1 29 9 40 0.82244 5/3/9/2/10
5 10 16 0.40838 1/0/2/0/2 30 10 36 0.65956 6/7/10/6/1
6 9 27 0.73783 1/0/2/1/2 31 9 15 0.42855 10/4/7/2/8
7 10 32 0.96086 2/0/1/2/2 32 10 20 0.33781 8/9/9/5/1
8 9 23 0.60785 2/2/3/1/0 33 9 4 0.15733 3/17/9/1/3
9 8 15 0.26441 3/1/4/1/0 34 10 39 0.60624 4/5/11/3/11
10 10 14 0.44005 3/4/2/0/1 35 9 36 0.23122 7/12/6/9/1
11 10 43 0.94423 4/0/5/1/1 36 10 29 0.78115 8/7/10/3/8
12 10 28 0.69794 2/3/4/0/3 37 10 26 0.50815 3/7/19/7/1
13 10 13 0.57998 4/4/3/0/2 38 10 21 0.435 5/1/13/18/1
14 8 36 0.32775 2/2/5/3/2 39 10 6 0.50945 8/5/12/11/3
15 9 41 0.91967 7/1/4/3/0 40 9 25 0.14614 3/12/11/8/6
16 7 24 0.86865 1/1/13/0/1 41 10 41 0.31392 15/8/9/1/8
17 9 21 0.4659 5/3/9/0/0 42 9 26 0.20789 9/1/18/6/8
18 8 25 0.28911 5/1/8/2/2 43 10 33 0.50571 2/7/13/11/10
19 10 16 0.38604 7/0/4/5/3 44 10 24 0.66713 15/5/9/12/3
20 7 22 0.22172 9/0/9/2/0 45 10 30 0.35783 14/8/14/8/1
21 9 31 0.17054 2/6/11/0/2 46 10 29 0.82661 12/0/18/2/14
22 10 39 0.31134 8/4/6/4/0 47 10 37 0.46702 3/4/16/13/11
23 9 20 0.96251 3/1/13/4/2 48 10 6 0.65432 11/9/10/5/13
24 9 11 0.1571 7/0/9/2/6 49 9 29 0.67786 13/9/16/0/11
25 10 13 0.25498 3/9/7/1/5 50 10 26 0.43544 7/11/7/8/17
26 10 31 0.57786 2/0/14/10/0
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Figure 3: The value of im for every evaluated value of m

where OPT denotes the optimal value of the benchmark objective function and HEUR
represents the objective function value found by IBEA. Additionally, the penultimate
column gives the average of the values presented in the second through thirteenth
columns, and the last column denotes the standard deviation of this same range of
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values.

Table 5: Average deviation from the optimal solution for IBEAs with different numbers
of islands

benchmark objective functions

m F1 F2 F4 F6 F7 F8 F9 F10 F11 F13 F14 F15 Average SD

2 320.36 0.00 0.00 0.06 0.05 0.82 1.77 177.53 1.77 115.58 9.95 1.68 52.465 97.718
3 193.90 0.00 0.00 0.05 0.04 0.74 1.70 160.73 1.48 115.08 9.97 0.73 40.368 69.057
4 0.00 0.00 0.00 0.05 0.04 0.74 1.73 136.65 1.17 115.01 10.06 0.00 22.122 46.668
5 61.72 0.00 0.00 0.05 0.04 0.74 1.51 173.60 1.49 115.19 9.04 0.24 30.301 54.988
6 0.06 0.00 0.00 0.05 0.04 0.71 1.57 133.67 1.44 115.08 9.31 0.03 21.831 46.083
7 0.00 0.00 0.00 0.05 0.04 0.74 1.61 118.58 1.46 115.26 9.03 0.14 20.574 43.158
8 0.00 0.00 0.00 0.04 0.03 0.29 1.41 113.72 1.19 114.94 6.00 0.00 19.802 42.304
9 0.01 0.00 0.00 0.04 0.03 0.35 1.31 139.57 1.26 114.94 6.01 0.00 21.961 47.385

10 0.01 0.00 0.00 0.04 0.02 0.24 1.12 114.50 1.29 114.94 5.38 0.00 19.794 42.476
11 0.00 0.00 0.00 0.03 0.02 0.51 1.17 95.02 1.13 114.94 7.92 0.00 18.395 38.993
12 0.00 0.00 0.00 0.04 0.02 0.23 1.18 119.23 1.30 98.44 5.14 0.00 18.799 40.513
13 0.00 0.00 0.00 0.04 0.02 0.26 0.92 105.06 0.94 104.19 5.31 0.00 18.062 38.738
14 0.00 0.00 0.00 0.04 0.02 0.34 1.23 103.19 1.15 114.94 6.43 0.00 18.945 40.411
15 0.00 0.00 0.00 0.03 0.02 0.34 1.21 105.89 1.11 114.94 6.47 0.00 19.168 40.885
16 0.00 0.00 0.00 0.03 0.01 0.54 0.87 124.30 1.51 114.94 8.19 0.40 20.899 44.244
17 0.00 0.00 0.00 0.03 0.01 0.29 0.85 82.42 1.01 114.94 5.70 0.00 17.106 37.112
18 0.00 0.00 0.00 0.03 0.02 0.36 1.10 69.62 1.04 114.94 6.15 0.00 16.105 35.338
19 0.00 0.00 0.00 0.04 0.03 0.49 1.09 112.38 1.06 114.94 7.19 0.00 19.767 42.036
20 0.10 0.00 0.00 0.03 0.02 0.51 1.07 104.80 0.86 114.94 6.60 0.00 19.078 40.695
21 0.00 0.00 0.00 0.03 0.01 0.27 0.89 84.75 1.11 114.94 5.69 0.00 17.308 37.453
22 0.00 0.00 0.00 0.03 0.02 0.27 1.01 72.59 0.83 109.19 5.13 0.00 15.756 34.450
23 0.00 0.00 0.00 0.03 0.01 0.39 1.08 21.84 0.87 114.94 6.15 0.00 12.109 31.581
24 0.00 0.00 0.00 0.03 0.02 0.48 0.94 85.16 0.98 114.94 6.77 0.00 17.442 37.483
25 0.00 0.00 0.00 0.03 0.01 0.24 0.94 111.62 1.09 114.94 4.75 0.00 19.469 41.979
26 0.00 0.00 0.00 0.03 0.01 0.46 1.01 58.89 0.61 114.94 6.93 0.00 15.239 34.085
27 0.00 0.00 0.00 0.03 0.01 0.32 0.75 58.41 1.02 114.94 6.09 0.00 15.131 34.052
28 0.00 0.00 0.00 0.03 0.01 0.31 1.01 55.35 0.77 114.94 5.31 0.00 14.811 33.754
29 0.00 0.00 0.00 0.03 0.01 0.28 1.01 53.94 0.73 109.20 5.55 0.00 14.229 32.192
30 0.00 0.00 0.00 0.03 0.01 0.25 0.96 76.31 0.88 114.94 4.94 0.00 16.527 36.266
31 0.00 0.00 0.00 0.03 0.02 0.25 0.95 69.12 0.87 114.94 5.49 0.00 15.973 35.307
32 0.00 0.00 0.00 0.03 0.01 0.24 0.88 80.49 1.00 114.94 5.02 0.00 16.885 36.849
33 0.00 0.00 0.00 0.03 0.01 0.21 0.98 76.33 0.75 114.94 4.41 0.00 16.471 36.289
34 0.00 0.00 0.00 0.03 0.01 0.27 0.92 76.59 0.91 104.21 4.97 0.00 15.659 33.923
35 0.00 0.00 0.00 0.03 0.01 0.20 1.03 101.61 0.73 114.94 4.60 0.00 18.595 40.217
36 0.00 0.00 0.00 0.03 0.01 0.26 0.94 54.85 0.76 112.44 5.27 0.00 14.548 33.091
37 0.00 0.00 0.00 0.03 0.01 0.27 0.82 63.74 0.67 114.94 5.24 0.00 15.476 34.675
38 0.00 0.00 0.00 0.03 0.01 0.37 1.00 53.88 0.92 114.94 6.51 0.00 14.804 33.576
39 0.00 0.00 0.00 0.03 0.01 0.28 0.84 39.33 0.81 109.19 5.08 0.00 12.964 30.930
40 0.00 0.00 0.00 0.03 0.01 0.23 0.89 103.00 0.91 114.94 4.77 0.00 18.732 40.450
41 0.00 0.00 0.00 0.03 0.01 0.20 0.91 81.42 0.56 114.94 4.70 0.00 16.897 37.010
42 0.00 0.00 0.00 0.03 0.01 0.34 0.89 69.71 0.73 114.94 5.77 0.00 16.034 35.379
43 0.00 0.00 0.00 0.03 0.01 0.24 0.87 63.60 0.91 114.94 4.87 0.00 15.456 34.658
44 0.00 0.00 0.00 0.03 0.01 0.26 0.89 55.37 0.51 104.19 4.98 0.00 13.854 31.151
45 0.00 0.00 0.00 0.03 0.01 0.23 0.96 52.55 0.44 104.19 0.76 0.00 13.264 30.967
46 0.00 0.00 0.00 0.02 0.01 0.37 0.77 14.68 0.82 114.94 5.83 0.00 11.453 31.474
47 0.00 0.00 0.00 0.03 0.01 0.27 0.85 69.33 0.82 114.94 5.54 0.00 15.982 35.337
48 0.00 0.00 0.00 0.03 0.01 0.25 0.93 81.63 0.62 114.94 4.59 0.00 16.915 37.039
49 0.00 0.00 0.00 0.03 0.01 0.25 0.89 38.86 0.71 82.70 4.83 0.00 10.689 24.156
50 0.00 0.00 0.00 0.03 0.01 0.20 0.92 63.98 0.79 104.19 4.44 0.00 14.547 32.186

The data in Table 5 shows that the hardest benchmark objective functions to be
optimized were F10 and F13, while F2 and F4 were the easiest ones. The IBEAs
tend to obtain better results when the number of islands m increases. In fact, one can
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construct a linear regression on the data presented in column Average of this table as
y = −0.296x + 26.059, which demonstrates such a tendency. The smallest average
result from optimal solutions was found for m = 49. Furthermore, for m = 49, we also
obtained the smallest standard deviation of this same data. Despite that, the IBEA with
49 islands was able to overcome all other IBEA implementations for only 2 out of the
12 evaluated benchmark objective functions.

To compare all of our IBEA implementations, we performed another statistical
evaluation on the data reported in Table 5. This statistical evaluation followed the same
statistical procedure reported in Section 5.2. The results are as follows.

In the first step, a Shapiro-Wilk test found p-values smaller than 0.05 for all values
of m. Thus, it indicated that parametrical statistical tests could not be used. Hence, the
next steps will employ non-parametrical statistical tests.

In the second step, the null hypothesis of Friedman’s test is that all IBEA imple-
mentations with different numbers of islands achieve the same average deviation from
the optimal solution. The input for the Friedman’s test was first preprocessed using
the methodology of Carvalho (2019). It was observed that the smallest average rank-
ing given by the preprocessing methodology of Carvalho (2019) was for the IBEA with
m = 49, thus suggesting that this was the best IBEA implementation. The Friedman’s
test obtained a p-value of 0.003. Therefore, it rejected the null hypothesis and confirmed
that there exists a significant difference between the average deviation from the optimal
solution of two or more of the IBEAs contrasted in this experiment.

In the third step, we applied the post-hoc Nemenyi’s test. This statistical test com-
pares the results of multiple algorithms and evaluates the pair of hypothesis

{
H0 : ϱi ≤ ϱj
H1 : ϱi ̸= ϱj

, ∀(ϱi, ϱj) ∈ R,

whereas R = {ϱ2, ϱ3, . . . , ϱ50}, such that ϱi corresponds to the average ranking ob-
tained by the IBEA with m = i. The null hypothesis (H0) affirms that the average
rankings ϱi and ϱj of all pairs of IBEA implementations do not significantly differ from
each other. Thus, the null hypothesis affirms that all algorithms have similar average
rankings. On the other hand, the alternative hypothesis (H1) suggests that the average
rankings given by an IBEA implementation ϱi statistically differ from those of another
implementation ϱj .

The Nemenyi’s test rejected the null hypothesis. Thus, we can affirm that there
exists a significant difference between the average rankings of an IBEA implementation
and the others. The results of the Nemenyi’s test are presented in Table 6. In that table,
the first row and the first column denote the number of islands (m). Every other cell
indicates whether the average ranking obtained by the IBEA implementation with x
islands differs (represented by the ! symbol) or not (represented by the = symbol) from
that of the IBEA implementation with y islands.

The data reported in Table 6 indicates a significant difference between many of the
evaluated IBEA implementations, but most of them are statistically similar. In special,
we would like to highlight that the IBEA implementation with m = 49 (that has the
smallest average deviation from the optimal solution and the smallest average ranking
provided by the methodology of Carvalho (2019)) does not statistically differ from the
IBEA implementations with m ∈ {10, . . . , 13, 15, . . . , 18, 20, . . . , 50}.
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Table 6: Results for the Nemenyi’s test

m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2 = = = = = = = = = = = = = = ! = = = ! ! ! = ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
3 = = = = = = = = = = = = = ! = = = = = ! = ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
4 = = = = = = = = = = = = = = = = = = = = = ! ! ! ! ! = = = ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
5 = = = = = = = = = = = = = = = = = = = = ! ! ! ! ! ! ! = ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
6 = = = = = = = = = = = = = = = = = = = ! ! ! ! ! = = = ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
7 = = = = = = = = = = = = = = = = = = = ! ! ! = = = = ! = ! ! = ! = ! ! ! ! ! ! ! ! ! !
8 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ! = = ! ! ! = = ! =
9 = = = = = = = = = = = = = = = = = = = = = = = = = = = ! = ! = ! = = ! ! ! = = ! !

10 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ! = = = = =
11 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
12 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
13 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
14 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ! ! ! = = ! =
15 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
16 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
17 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
18 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
19 = = = = = = = = = = = = = = = = = = = = = = = = = ! = = = ! =
20 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
21 = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
22 = = = = = = = = = = = = = = = = = = = = = = = = = = = =
23 = = = = = = = = = = = = = = = = = = = = = = = = = = =
24 = = = = = = = = = = = = = = = = = = = = = = = = = =
25 = = = = = = = = = = = = = = = = = = = = = = = = =
26 = = = = = = = = = = = = = = = = = = = = = = = =
27 = = = = = = = = = = = = = = = = = = = = = = =
28 = = = = = = = = = = = = = = = = = = = = = =
29 = = = = = = = = = = = = = = = = = = = = =
30 = = = = = = = = = = = = = = = = = = = =
31 = = = = = = = = = = = = = = = = = = =
32 = = = = = = = = = = = = = = = = = =
33 = = = = = = = = = = = = = = = = =
34 = = = = = = = = = = = = = = = =
35 = = = = = = = = = = = = = = =
36 = = = = = = = = = = = = = =
37 = = = = = = = = = = = = =
38 = = = = = = = = = = = =
39 = = = = = = = = = = =
40 = = = = = = = = = =
41 = = = = = = = = =
42 = = = = = = = =
43 = = = = = = =
44 = = = = = =
45 = = = = =
46 = = = =
47 = = =
48 = =
49 =

6 Conclusions

This paper evaluated a co-evolutionary framework for developing evolutionary algo-
rithms based on the concept of islands. An evolutionary algorithm developed through
this framework is denoted as an island-based evolutionary algorithm (IBEA). In this
framework, the algorithm’s population is split into several islands that evolve semi-
isolated but can interact using a migration operator.

We performed the most extensive and robust evaluation of this framework in the
literature. We implemented and contrasted IBEAs with up to 50 islands, employing
2 migration operators, and using up to 5 different evolutionary algorithms: a genetic
algorithm (GA), a differential evolution algorithm (DE), a particle swarm optimization
algorithm (PSO), an ant colony optimization algorithm (ACO), and a clonal selection
algorithm (CLONAL).
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We can conclude that using the co-evolutionary islands model for developing
evolutionary algorithms is beneficial in optimizing the proposed benchmark objective
functions. Despite not being statistically superior to the others, the IBEA implementa-
tion with m = 49 found the best results among the evaluated algorithms, as a statistical
analysis of our experiments pointed out that using 8, 10, or more islands leads to similar
results if the model is properly tuned and optimized. Thus, we recommend the use of
IBEAs with more than 10 islands when optimizing the proposed benchmark objective
functions.

Furthermore, our experiments also demonstrated that combining several algo-
rithms produces better results for the co-evolutionary islands model than using a sin-
gle algorithm in all islands, as pointed out in Table 4. These different algorithms have
mechanisms capable of exploring the solution space differently from each other, and
the combination of all of these mechanisms can avoid premature convergence and aid
in escaping from local optima.

We hope that our paper was able to establish some experimental ground on this
distributed framework. We expect other researchers and practitioners to employ our
data (Gouveia (2024)) and experiments to propose their island-based evolutionary al-
gorithms. Future work may evaluate IBEA algorithms in solving combinatorial, linear,
and non-linear optimization problems.
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