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Abstract

In what follows we are going to adapt the Fourier Grid Hamiltonian
Method to be applied to potentials with position-dependent masses.

1 Introduction

The Fourier-grid Hamiltonian method use a mixed position and momentum rep-
resentation to describe the Hamiltonian to be applied to Schrödinger’s equation.

Ĥ = T̂ + V (x̂), (1)

where T̂ is the kinetic energy operator and V (x̂) is the potential energy operator.
That Hamiltonian still was not put on a specific representation.

In the coordinate representation, the basis is such that

x̂|x〉 = x|x〉, (2)

where vectors |x〉 forms an orthonormal basis

〈xs|xj〉 =
δsj
∆x

. (3)

The completeness relationship is∑
s

|xs〉∆x〈xs| = 1. (4)

As we know in position representation potential operator is diagonal

〈xs|V (x̂)|xj〉 = V (xs)
δsj
∆x

. (5)

The momentum representation is given by the state vectors |k〉, and the
momentum operator is diagonal in such a representation

p̂|k〉 = h̄k|k〉. (6)
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When the potential representing the system has a position-dependent mass,
the Hamiltonian becomes non-hermitian. In order to rescue the hermiticity, an
usual approach is to symmetrize it, by writing the kinetic energy operator as

K̂ =
1

2
p̂

[
1

m(x̂)

]
p̂. (7)

The kinetic operator element of matrix becomes

K̂sj = 〈xs|K̂|xj〉. (8)

Using the completeness relationship for the momentum representation∑
q

|kq〉∆k〈kq| = 1, (9)

and the one for the position representation (eq. 4),

K̂sj =
1

2
〈xs|

[
p̂

n∑
l=−n

|kl〉∆k〈kl|
[

1

m(x̂)

]
p̂

n∑
q=−n

|kq〉∆k〈kq|

]
|xj〉. (10)

K̂sj =
1

2
〈xs|

[
p̂

n∑
l=−n

|kl〉∆k〈kl|
N∑
r=1

1

m(x̂)
|xr〉∆x〈xr|p̂

n∑
q=−n

|kq〉∆k〈kq|

]
|xj〉.

(11)
Rearranging the sums and applying the operators,

K̂sj =
1

2

N∑
r=1

n∑
l=−n

n∑
q=−n

〈xs|
[
h̄kl|kl〉∆k〈kl|

1

mr
|xr〉∆x〈xr|h̄kq|kq〉∆k〈kq|

]
|xj〉,

(12)
where mr = m(xr).

K̂sj =
1

2

N∑
r=1

n∑
l=−n

n∑
q=−n

h̄kl〈xs|kl〉∆km−1
r 〈kl|xr〉∆xh̄kq〈xr|kq〉∆k〈kq|xj〉, (13)

K̂sj =
1

2

N∑
r=1

n∑
l=−n

n∑
q=−n

plpq∆k
2〈xs|kl〉m−1

r 〈kl|xr〉〈xr|kq〉〈kq|xj〉∆x, (14)

where pi = h̄ki = h̄i∆k = 2πih̄/N∆x. The transformation between representa-
tions is given by the fourier transform

〈k|x〉 =
1√
2π
e−ikx. (15)
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Therefore

K̂sj =
1

2

N∑
r=1

n∑
l=−n

n∑
q=−n

plpq
mr

∆k2 e
iklxs

√
2π

e−iklxr

√
2π

eikqxr

√
2π

e−ikqxj

√
2π

∆x, (16)

K̂sj =
1

2

N∑
r=1

n∑
l=−n

n∑
q=−n

plpq
mr

∆k2 e
ikl(xs−xr)

2π

eikq(xr−xj)

2π
∆x, (17)

For an equally space mesh xi = i∆x, and ki = iδk,

K̂sj =
1

2

N∑
r=1

n∑
l=−n

n∑
q=−n

plpq
mr

∆k2 e
il∆k(s−r)∆x

2π

eiqδk(r−j)∆x

2π
∆x, (18)

Writing ∆k = 2π/N∆x, we get

K̂sj =
1

2N2∆x

N∑
r=1

n∑
l=−n

n∑
q=−n

plpq
mr

e2πi
l(s−r)

N e2πi
q(r−j)

N . (19)

Note that for each element of matrix we have to proceed three sums, which
is quite expensive computationally. Let’s try to group some terms. As we see,
l and q sums are almost the same, lets examine some terms. For instance,
considering l = q,

K̂l=q
sj =

1

2N2∆x

N∑
r=1

m−1
r

n∑
l=−n

p2
l e

2πi
l(s−j)

N . (20)

The sum of the mass, if its constant returns the total mass
∑N
r=1m

−1
r =

N/m, so

K̂l=q
sj =

1

N∆x

n∑
l=−n

p2
l

2m
e2πi

l(s−j)
N , (21)

recovering traditional Kinetic energy element of matrix.
Considering now superior tth diagonal, by setting l = q + t,

K̂q=l−t
sj =

1

2N2∆x

N∑
r=1

n∑
l=−n

l−n∑
t=l+n

plpl−t
mr

e2πi
l(s−r)

N e2πi
(l−t)(r−j)

N . (22)

K̂q=l−t
sj =

1

2N2∆x

N∑
r=1

n∑
l=−n

l−n∑
t=l+n

plpl−t
mr

exp

[
2πi

(l(s− j) + t(j − r))
N

]
. (23)

K̂q=l−t
sj =

1

2N2∆x

N∑
r=1

n∑
l=−n

l−n∑
t=l+n

plpl−t
mr

exp

[
2πi

l(s− j)
N

]
exp

[
2πi

t(j − r)
N

]
.

(24)
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l
-3 -2 -1 0 1 2 3
-6 -5 -4 -3 -2 -1 0
-5 -4 -3 -2 -1 0 1
-4 -3 -2 -1 0 1 2
-3 -2 -1 0 1 2 3
-2 -1 0 1 2 3 4
-1 0 1 2 3 4 5

t

0 1 2 3 4 5 6

K̂q=l−t
sj =

1

2N2∆x

N∑
r=1

n∑
l=−n

l+n∑
t=l−n

plpl−t
mr

exp

[
2πi

l(s− j)
N

]
exp

[
−2πi

t(j − r)
N

]
.

(25)
Suppose a determined n, the second sum has three terms −n ≤ l ≤ n, and

the third sum runs l − n ≤ t ≤ l + n, with a total of 2n+ 1 terms for each l.
Being [2πi(s− j)/N ] = β, and [−2πi(j − r)/N ] = α, we get

K̂q=l−t
sj =

1

2N2∆x

N∑
r=1

n∑
l=−n

l+n∑
t=l−n

plpl−t
mr

eβleαt. (26)

As shown in table 1, for n = 3, the sum over t runs from -6 to 6, depending
on the l. We can use the indexes in the table to explicitly expand the product
of the sums.

Rewriting only the second and third sums, for the sake of simplicity, assum-
ing n = 1 (using the indexes highlighted with the box in the table 1)

1∑
l=−1

l+1∑
t=l−1

eβleαt = p−1e
−β [p1e

−2α + p0e
−1α + p−1e

0α
]

+

p0e
0β
[
p1e

−1α + p0e
0α + p−1e

1α
]

+ p1e
1β
[
p1e

0α + p0e
1α + p−1e

2α
]
. (27)

1∑
l=−1

l+1∑
t=l−1

eβleαt = tr

p−1e
−β p−1e

−β p−1e
−β

p0e
0β p0e

0β p0e
0β

p1e
β p1e

β p1e
β

p1e
−2α p1e

−α p1e
0α

p0e
−α p0e

0α p0e
α

p−1e
0α p−1e

α p−1e
2α


(28)

Therefore, the double sum could be recast as the trace of the product of two
relatively simple matrices

1∑
l=−1

l+1∑
t=l−1

eβleαt = tr(Â · B̂). (29)
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Backing to the kinetic energy operator element of matrix,

K̂sj =
1

2N2∆x

∑
r

1

mr
tr(Âs,j,r · B̂s,j,r). (30)

Now we can rewrite the Hamiltonian element of matrix

Ĥsj =
1

2N2∆x

N∑
r=1

1

mr
tr(Âs,j,r · B̂s,j,r) + V (xs)

δsj
∆x

. (31)
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