Position-Dependent mass FGH

Anibal Thiago Bezerra

July 2019

Abstract

In what follows we are going to adapt the Fourier Grid Hamiltonian Method to be applied to potentials with position-dependent masses.

1 Introduction

The Fourier-grid Hamiltonian method use a mixed position and momentum representation to describe the Hamiltonian to be applied to Schrödinger's equation.

$$
\begin{equation*}
\hat{H}=\hat{T}+V(\hat{x}) \tag{1}
\end{equation*}
$$

where \hat{T} is the kinetic energy operator and $V(\hat{x})$ is the potential energy operator. That Hamiltonian still was not put on a specific representation.

In the coordinate representation, the basis is such that

$$
\begin{equation*}
\hat{x}|x\rangle=x|x\rangle \tag{2}
\end{equation*}
$$

where vectors $|x\rangle$ forms an orthonormal basis

$$
\begin{equation*}
\left\langle x_{s} \mid x_{j}\right\rangle=\frac{\delta_{s j}}{\Delta x} . \tag{3}
\end{equation*}
$$

The completeness relationship is

$$
\begin{equation*}
\sum_{s}\left|x_{s}\right\rangle \Delta x\left\langle x_{s}\right|=1 \tag{4}
\end{equation*}
$$

As we know in position representation potential operator is diagonal

$$
\begin{equation*}
\left\langle x_{s}\right| V(\hat{x})\left|x_{j}\right\rangle=V\left(x_{s}\right) \frac{\delta_{s j}}{\Delta x} . \tag{5}
\end{equation*}
$$

The momentum representation is given by the state vectors $|k\rangle$, and the momentum operator is diagonal in such a representation

$$
\begin{equation*}
\hat{p}|k\rangle=\hbar k|k\rangle . \tag{6}
\end{equation*}
$$

When the potential representing the system has a position-dependent mass, the Hamiltonian becomes non-hermitian. In order to rescue the hermiticity, an usual approach is to symmetrize it, by writing the kinetic energy operator as

$$
\begin{equation*}
\hat{K}=\frac{1}{2} \hat{p}\left[\frac{1}{m(\hat{x})}\right] \hat{p} \tag{7}
\end{equation*}
$$

The kinetic operator element of matrix becomes

$$
\begin{equation*}
\hat{K}_{s j}=\left\langle x_{s}\right| \hat{K}\left|x_{j}\right\rangle . \tag{8}
\end{equation*}
$$

Using the completeness relationship for the momentum representation

$$
\begin{equation*}
\sum_{q}\left|k_{q}\right\rangle \Delta k\left\langle k_{q}\right|=1 \tag{9}
\end{equation*}
$$

and the one for the position representation (eq. 4),

$$
\begin{gather*}
\hat{K}_{s j}=\frac{1}{2}\left\langle x_{s}\right|\left[\hat{p} \sum_{l=-n}^{n}\left|k_{l}\right\rangle \Delta k\left\langle k_{l}\right|\left[\frac{1}{m(\hat{x})}\right] \hat{p} \sum_{q=-n}^{n}\left|k_{q}\right\rangle \Delta k\left\langle k_{q}\right|\right]\left|x_{j}\right\rangle . \tag{10}\\
\hat{K}_{s j}=\frac{1}{2}\left\langle x_{s}\right|\left[\hat{p} \sum_{l=-n}^{n}\left|k_{l}\right\rangle \Delta k\left\langle k_{l}\right| \sum_{r=1}^{N} \frac{1}{m(\hat{x})}\left|x_{r}\right\rangle \Delta x\left\langle x_{r}\right| \hat{p} \sum_{q=-n}^{n}\left|k_{q}\right\rangle \Delta k\left\langle k_{q}\right|\right]\left|x_{j}\right\rangle . \tag{11}
\end{gather*}
$$

Rearranging the sums and applying the operators,

$$
\begin{equation*}
\hat{K}_{s j}=\frac{1}{2} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{q=-n}^{n}\left\langle x_{s}\right|\left[\hbar k_{l}\left|k_{l}\right\rangle \Delta k\left\langle k_{l}\right| \frac{1}{m_{r}}\left|x_{r}\right\rangle \Delta x\left\langle x_{r}\right| \hbar k_{q}\left|k_{q}\right\rangle \Delta k\left\langle k_{q}\right|\right]\left|x_{j}\right\rangle, \tag{12}
\end{equation*}
$$

where $m_{r}=m\left(x_{r}\right)$.

$$
\begin{gather*}
\hat{K}_{s j}=\frac{1}{2} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{q=-n}^{n} \hbar k_{l}\left\langle x_{s} \mid k_{l}\right\rangle \Delta k m_{r}^{-1}\left\langle k_{l} \mid x_{r}\right\rangle \Delta x \hbar k_{q}\left\langle x_{r} \mid k_{q}\right\rangle \Delta k\left\langle k_{q} \mid x_{j}\right\rangle, \tag{13}\\
\hat{K}_{s j}=\frac{1}{2} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{q=-n}^{n} p_{l} p_{q} \Delta k^{2}\left\langle x_{s} \mid k_{l}\right\rangle m_{r}^{-1}\left\langle k_{l} \mid x_{r}\right\rangle\left\langle x_{r} \mid k_{q}\right\rangle\left\langle k_{q} \mid x_{j}\right\rangle \Delta x, \tag{14}
\end{gather*}
$$

where $p_{i}=\hbar k_{i}=\hbar i \Delta k=2 \pi i \hbar / N \Delta x$. The transformation between representations is given by the fourier transform

$$
\begin{equation*}
\langle k \mid x\rangle=\frac{1}{\sqrt{2 \pi}} e^{-i k x} \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{gather*}
\hat{K}_{s j}=\frac{1}{2} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{q=-n}^{n} \frac{p_{l} p_{q}}{m_{r}} \Delta k^{2} \frac{e^{i k_{l} x_{s}}}{\sqrt{2 \pi}} \frac{e^{-i k_{l} x_{r}}}{\sqrt{2 \pi}} \frac{e^{i k_{q} x_{r}}}{\sqrt{2 \pi}} \frac{e^{-i k_{q} x_{j}}}{\sqrt{2 \pi}} \Delta x, \tag{16}\\
\hat{K}_{s j}=\frac{1}{2} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{q=-n}^{n} \frac{p_{l} p_{q}}{m_{r}} \Delta k^{2} \frac{e^{i k_{l}\left(x_{s}-x_{r}\right)}}{2 \pi} \frac{e^{i k_{q}\left(x_{r}-x_{j}\right)}}{2 \pi} \Delta x, \tag{17}
\end{gather*}
$$

For an equally space mesh $x_{i}=i \Delta x$, and $k_{i}=i \delta k$,

$$
\begin{equation*}
\hat{K}_{s j}=\frac{1}{2} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{q=-n}^{n} \frac{p_{l} p_{q}}{m_{r}} \Delta k^{2} \frac{e^{i l \Delta k(s-r) \Delta x}}{2 \pi} \frac{e^{i q \delta k(r-j) \Delta x}}{2 \pi} \Delta x, \tag{18}
\end{equation*}
$$

Writing $\Delta k=2 \pi / N \Delta x$, we get

$$
\begin{equation*}
\hat{K}_{s j}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{q=-n}^{n} \frac{p_{l} p_{q}}{m_{r}} e^{2 \pi i \frac{l(s-r)}{N}} e^{2 \pi i \frac{q(r-j)}{N}} . \tag{19}
\end{equation*}
$$

Note that for each element of matrix we have to proceed three sums, which is quite expensive computationally. Let's try to group some terms. As we see, l and q sums are almost the same, lets examine some terms. For instance, considering $l=q$,

$$
\begin{equation*}
\hat{K}_{s j}^{l=q}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} m_{r}^{-1} \sum_{l=-n}^{n} p_{l}^{2} e^{2 \pi i \frac{l(s-j)}{N}} . \tag{20}
\end{equation*}
$$

The sum of the mass, if its constant returns the total mass $\sum_{r=1}^{N} m_{r}^{-1}=$ N / m, so

$$
\begin{equation*}
\hat{K}_{s j}^{l=q}=\frac{1}{N \Delta x} \sum_{l=-n}^{n} \frac{p_{l}^{2}}{2 m} e^{2 \pi i \frac{l(s-j)}{N}}, \tag{21}
\end{equation*}
$$

recovering traditional Kinetic energy element of matrix.
Considering now superior $t^{t h}$ diagonal, by setting $l=q+t$,

$$
\begin{gather*}
\hat{K}_{s j}^{q=l-t}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{t=l+n}^{l-n} \frac{p_{l} p_{l-t}}{m_{r}} e^{2 \pi i \frac{l(s-r)}{N}} e^{2 \pi i \frac{(l-t)(r-j)}{N}} . \tag{22}\\
\hat{K}_{s j}^{q=l-t}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{t=l+n}^{l-n} \frac{p_{l} p_{l-t}}{m_{r}} \exp \left[2 \pi i \frac{(l(s-j)+t(j-r))}{N}\right] . \tag{23}\\
\hat{K}_{s j}^{q=l-t}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{t=l+n}^{l-n} \frac{p_{l} p_{l-t}}{m_{r}} \exp \left[2 \pi i \frac{l(s-j)}{N}\right] \exp \left[2 \pi i \frac{t(j-r)}{N}\right] . \tag{24}
\end{gather*}
$$

$$
\begin{equation*}
\hat{K}_{s j}^{q=l-t}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{t=l-n}^{l+n} \frac{p_{l} p_{l-t}}{m_{r}} \exp \left[2 \pi i \frac{l(s-j)}{N}\right] \exp \left[-2 \pi i \frac{t(j-r)}{N}\right] . \tag{25}
\end{equation*}
$$

Suppose a determined n, the second sum has three terms $-n \leq l \leq n$, and the third sum runs $l-n \leq t \leq l+n$, with a total of $2 n+1$ terms for each l.

Being $[2 \pi i(s-j) / N]=\beta$, and $[-2 \pi i(j-r) / N]=\alpha$, we get

$$
\begin{equation*}
\hat{K}_{s j}^{q=l-t}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} \sum_{l=-n}^{n} \sum_{t=l-n}^{l+n} \frac{p_{l} p_{l-t}}{m_{r}} e^{\beta l} e^{\alpha t} \tag{26}
\end{equation*}
$$

As shown in table 1 , for $n=3$, the sum over t runs from -6 to 6 , depending on the l. We can use the indexes in the table to explicitly expand the product of the sums.

Rewriting only the second and third sums, for the sake of simplicity, assuming $n=1$ (using the indexes highlighted with the box in the table 1)

$$
\begin{align*}
& \sum_{l=-1}^{1} \sum_{t=l-1}^{l+1} e^{\beta l} e^{\alpha t}=p_{-1} e^{-\beta}\left[p_{1} e^{-2 \alpha}+p_{0} e^{-1 \alpha}+p_{-1} e^{0 \alpha}\right]+ \\
& \quad p_{0} e^{0 \beta}\left[p_{1} e^{-1 \alpha}+p_{0} e^{0 \alpha}+p_{-1} e^{1 \alpha}\right]+p_{1} e^{1 \beta}\left[p_{1} e^{0 \alpha}+p_{0} e^{1 \alpha}+p_{-1} e^{2 \alpha}\right] . \tag{27}\\
& \sum_{l=-1}^{1} \sum_{t=l-1}^{l+1} e^{\beta l} e^{\alpha t}=\operatorname{tr}\left[\begin{array}{ccc}
p_{-1} e^{-\beta} & p_{-1} e^{-\beta} & p_{-1} e^{-\beta} \\
p_{0} e^{0 \beta} & p_{0} e^{0 \beta} & p_{0} e^{0 \beta} \\
p_{1} e^{\beta} & p_{1} e^{\beta} & p_{1} e^{\beta}
\end{array}\right]\left[\begin{array}{ccc}
p_{1} e^{-2 \alpha} & p_{1} e^{-\alpha} & p_{1} e^{0 \alpha} \\
p_{0} e^{-\alpha} & p_{0} e^{0 \alpha} & p_{0} e^{\alpha} \\
p_{-1} e^{0 \alpha} & p_{-1} e^{\alpha} & p_{-1} e^{2 \alpha}
\end{array}\right] \tag{28}
\end{align*}
$$

Therefore, the double sum could be recast as the trace of the product of two relatively simple matrices

$$
\begin{equation*}
\sum_{l=-1}^{1} \sum_{t=l-1}^{l+1} e^{\beta l} e^{\alpha t}=\operatorname{tr}(\hat{A} \cdot \hat{B}) . \tag{29}
\end{equation*}
$$

Backing to the kinetic energy operator element of matrix,

$$
\begin{equation*}
\hat{K}_{s j}=\frac{1}{2 N^{2} \Delta x} \sum_{r} \frac{1}{m_{r}} \operatorname{tr}\left(\hat{A}_{s, j, r} \cdot \hat{B}_{s, j, r}\right) \tag{30}
\end{equation*}
$$

Now we can rewrite the Hamiltonian element of matrix

$$
\begin{equation*}
\hat{H}_{s j}=\frac{1}{2 N^{2} \Delta x} \sum_{r=1}^{N} \frac{1}{m_{r}} \operatorname{tr}\left(\hat{A}_{s, j, r} \cdot \hat{B}_{s, j, r}\right)+V\left(x_{s}\right) \frac{\delta_{s j}}{\Delta x} . \tag{31}
\end{equation*}
$$

