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Abstract

In what follows we are going to adapt the Fourier Grid Hamiltonian
Method to be applied to potentials with position-dependent masses.

1 Introduction

The Fourier-grid Hamiltonian method use a mixed position and momentum rep-
resentation to describe the Hamiltonian to be applied to Schrodinger’s equation.

H=T+V(), (1)

where T is the kinetic energy operator and V(&) is the potential energy operator.
That Hamiltonian still was not put on a specific representation.
In the coordinate representation, the basis is such that

&lz) = xlz), (2)
where vectors |z) forms an orthonormal basis
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The completeness relationship is

Z‘xs>Al‘<xs‘ =1 (4)

As we know in position representation potential operator is diagonal
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The momentum representation is given by the state vectors |k), and the
momentum operator is diagonal in such a representation

(2s|V(2)])) = V(zs)

plk) = hkl|k). (6)



When the potential representing the system has a position-dependent mass,
the Hamiltonian becomes non-hermitian. In order to rescue the hermiticity, an
usual approach is to symmetrize it, by writing the kinetic energy operator as

K= [m;)] b (7)

The kinetic operator element of matrix becomes

Ky = (x4 K|x;). (8)

Using the completeness relationship for the momentum representation
D Ikq) Akkg| = 1, (9)
q

and the one for the position representation (eq. 4),

Koy = 5o [ﬁ > kil |5 3 kq>Ak<kq|] o) (10

l=—n qg=—n

N
K xs| [ Z |y Ak kﬂzm |z Ax(z,|p Z |kq) Ak(K q|] |z5).

l=—n q=-—n
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Rearranging the sums and applying the operators,
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where p; = hk; = hiAk = 2mwih /N Az. The transformation between representa-
tions is given by the fourier transform

(k|z)y = e ik, (15)
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Therefore
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For an equally space mesh z; = iAz, and k; = idk,

ilAk(s—r)Ax eiq5k(T_j)A?E
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Writing Ak = 27 /N Az, we get

Ky = 2N2sz Z Z p;iq PR 2T (19)
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Note that for each element of matrix we have to proceed three sums, which
is quite expensive computationally. Let’s try to group some terms. As we see,
[ and ¢ sums are almost the same, lets examine some terms. For instance,
considering [ = q,

A= 1 L)
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The sum of the mass, if its constant returns the total mass 27]«\[:1 m, - =
N/m, so
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recovering traditional Kinetic energy element of matrix.
Considering now superior t** diagonal, by setting | = ¢ + ¢,

g=l-t Dipi—¢ o2 Leor) o2 4=t)r=3)
K ZNQMZ > Z et (22)

r=1l=—nt=Il+n

N n

K;]J — t N2Am Z Z Z pl:; t exp |:27Tl (l(S 7]) j\}t(] 7 T’)):| ) (23)

r=1l=—nt=l4+n r

q=l—t _ Dipi—t I(s —7) t(j—7)
KSJ 2N2Ax Z Z Z exp [277@ N exp 27”7]\7 .

r=1l=—nt=l+n



-3 -2 -1 0 1 2 3
6 5 4 -3 -2 -1 O
-5 4 -3 -2 -1 0 1
4 3|2 -1 0|1 2
t 3 -2(-1 0 1|2 3
-2 -1j0 1 213 4
-1 0 1 2 3 4 5
0o 1 2 3 4 5 6

n I+n .
q=l—t _ Pipi—t (s —J) _ t(j—r)
ng 2N2Am E E g exp [277@ N exp | —2mi N .

r=1]l=—nt=l-n
(25)
Suppose a determined n, the second sum has three terms —n <[ < n, and
the third sum runs | — n <t <1+ n, with a total of 2n + 1 terms for each .
Being [27i(s — j)/N] = 8, and [-27i(j —r)/N] = «, we get
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As shown in table 1, for n = 3, the sum over t runs from -6 to 6, depending
on the [. We can use the indexes in the table to explicitly expand the product
of the sums.

Rewriting only the second and third sums, for the sake of simplicity, assum-
ing n = 1 (using the indexes highlighted with the box in the table 1)
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Therefore, the double sum could be recast as the trace of the product of two
relatively simple matrices

1 +1

Z Z ePlect = tr(A- B). (29)

l=—1t=l-1



Backing to the kinetic energy operator element of matrix,
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Now we can rewrite the Hamiltonian element of matrix
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