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Smartphone camera based assessment of adiposity: a
validation study
Maulik D. Majmudar 1✉, Siddhartha Chandra1, Kiran Yakkala1, Samantha Kennedy2, Amit Agrawal1, Mark Sippel1, Prakash Ramu1,
Apoorv Chaudhri1, Brooke Smith2, Antonio Criminisi1, Steven B. Heymsfield2 and Fatima Cody Stanford 3

Body composition is a key component of health in both individuals and populations, and excess adiposity is associated with an
increased risk of developing chronic diseases. Body mass index (BMI) and other clinical or commercially available tools for
quantifying body fat (BF) such as DXA, MRI, CT, and photonic scanners (3DPS) are often inaccurate, cost prohibitive, or cumbersome
to use. The aim of the current study was to evaluate the performance of a novel automated computer vision method, visual body
composition (VBC), that uses two-dimensional photographs captured via a conventional smartphone camera to estimate
percentage total body fat (%BF). The VBC algorithm is based on a state-of-the-art convolutional neural network (CNN). The
hypothesis is that VBC yields better accuracy than other consumer-grade fat measurements devices. 134 healthy adults ranging in
age (21–76 years), sex (61.2% women), race (60.4% White; 23.9% Black), and body mass index (BMI, 18.5–51.6 kg/m2) were
evaluated at two clinical sites (N= 64 at MGH, N= 70 at PBRC). Each participant had %BF measured with VBC, three consumer and
two professional bioimpedance analysis (BIA) systems. The PBRC participants also had air displacement plethysmography (ADP)
measured. %BF measured by dual-energy x-ray absorptiometry (DXA) was set as the reference against which all other %BF
measurements were compared. To test our scientific hypothesis we run multiple, pair-wise Wilcoxon signed rank tests where we
compare each competing measurement tool (VBC, BIA, …) with respect to the same ground-truth (DXA). Relative to DXA, VBC had
the lowest mean absolute error and standard deviation (2.16 ± 1.54%) compared to all of the other evaluated methods (p < 0.05 for
all comparisons). %BF measured by VBC also had good concordance with DXA (Lin’s concordance correlation coefficient, CCC: all
0.96; women 0.93; men 0.94), whereas BMI had very poor concordance (CCC: all 0.45; women 0.40; men 0.74). Bland-Altman analysis
of VBC revealed the tightest limits of agreement (LOA) and absence of significant bias relative to DXA (bias −0.42%, R2= 0.03;
p= 0.062; LOA −5.5% to +4.7%), whereas all other evaluated methods had significant (p < 0.01) bias and wider limits of agreement.
Bias in Bland-Altman analyses is defined as the discordance between the y= 0 axis and the regressed line computed from the data
in the plot. In this first validation study of a novel, accessible, and easy-to-use system, VBC body fat estimates were accurate and
without significant bias compared to DXA as the reference; VBC performance exceeded those of all other BIA and ADP methods
evaluated. The wide availability of smartphones suggests that the VBC method for evaluating %BF could play an important role in
quantifying adiposity levels in a wide range of settings.

Trial registration: ClinicalTrials.gov Identifier: NCT04854421.
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INTRODUCTION
Body composition is associated with cardiorespiratory fitness and
longitudinal health outcomes1,2. In clinical practice, body compo-
sition assessment is often used to evaluate dietary habits3, excess
adiposity4 and malnutrition5, weight loss following bariatric
surgery6, and the sarcopenia that often evolves with aging7.
Excess adiposity impairs functional performance, is a major risk
factor for developing chronic diseases, and is often accompanied
by poor self-esteem8–10. The increased risk of chronic diseases that
accompany excessive fat accumulation is the leading cause of
death globally and contributes to an estimated $210 billion in
medical costs in the US annually11,12.
In clinical practice, thresholds for body weight classifications are

determined using BMI, where adults with BMI ≥25 and ≥30 kg/m2

are defined as overweight and obese, respectively13–15. However,
BMI cannot discern the fat component of body mass from lean
tissues. As such, adiposity levels are often misclassified in those

who deviate from normalized lean mass percentages, including
older adults who have lost muscle with age and athletic
individuals with more muscular builds16,17. As studies have
become more inclusive18, it has also become apparent that body
composition, specifically percent body fat (%BF), varies across race
and ethnic groups even after controlling for age and BMI, which
leaves placement of weight category thresholds questionable
when applied to the general public19–22. Due to these limitations,
BMI is an imperfect obesity screening tool despite its widespread
clinical application23–26. Alternative body composition technolo-
gies focus on measuring body fat. For example, bioelectrical
impedance analysis (BIA), calipers, and anthropometric measure-
ments are commonly used due to time and ease of measurement
at the expense of accuracy17,27–29. Imaging techniques such as
magnetic resonance (MRI), used in combination with a
4-compartment body model are considered to be the reference
standard in body composition analysis due to their ability to
discriminate and localize soft tissues30,31. Nevertheless, MRI is
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rarely applied in routine body composition assessment due to
concerns with cost, convenience, accessibility, and equipment
size. Cheaper and slightly more widely available techniques are
dual x-ray absorptiometry (DXA) and computed tomography (CT).
The latter two raise concerns with radiation exposure and are still
too expensive and inconvenient to use routinely as a way of
monitoring body composition changes at home. DXA is a popular
choice as a reference method in clinical research programs32.
Recently, advancements in optical imaging technology have

offered innovative and inexpensive methods for assessing body
size, shape, and composition33–36. Three-dimensional imaging
devices have made it possible to easily obtain thorough body
measurements and estimate composition without requiring
considerable skill or additional instructions37. However, due to
their size and cost, ranging anywhere between $10,000 and
$20,000 USD, current 3D optical systems remain largely unavail-
able to most consumers.
The gap in available, accurate and inexpensive tools for

consumers to estimate and track their adiposity level led us to
develop a novel imaging approach for quantifying total %BF. The
application of machine learning, specifically deep learning38, to
the task of body fat estimation from 2D optical images has not
previously been explored sufficiently despite widespread poten-
tial, because of the inherent complexities in acquiring reliable
reference measurements of body fat and a lack of large, annotated
datasets in this domain. The study of Farina et al.39 is one of the
few that explores the use of phone-captured digital photographs
for body composition and phenotyping. However, their procedure
involves photos taken in controlled environments in which
participants are imaged against a uniform background. In that
work, a trained operator also placed some reference markers on
the image before the actual analyses began.
In contrast, when developing VBC we aimed to make the whole

process completely automatic and easy enough for home use,
irrespective of environment (e.g., messy kitchen, cluttered
restroom, etc.) or lighting conditions.
The aim of this study was to evaluate the performance of VBC, a

novel body composition analysis system, in estimating %BF
directly from 2D digital photographs captured by personal
smartphones, as compared to many other commercial body
composition analysis methods, with DXA as the reference
measurement. Note that actual DXA images are never used here;
only the derived %BF measurements are used as the reference for
algorithm training and for accuracy assessment. Alternative
sources of reference measurements are possible, such as MRI
and CT, at a greater cost.

RESULTS
Participants
A total of 406 adults were initially screened for this study. Of those,
199 met all inclusion and exclusion criteria and were considered
eligible. 138 participants were enrolled into the clinical study and
134 participants (64 from MGH and 70 from PBRC) were included
in the final analysis; four participants (2.9%) were removed from
the final analysis due to poor image quality (Fig. 1). The
demographic and anthropometric characteristics of the final study
sample are shown in Table 1. The ethnic and racially diverse
sample was 60.4% White, 23.9% Black, 6.7% Asian, 3.0% Hispanic,
0.7% American Indian and the remaining 5.2% Multiracial, across
the two study sites. Participant’s mean age was 43 ± 14.7 years
(range, 21–76 years) and BMI 29.7 ± 6.5 kg/m2 (range,
18.5–51.6 kg/m2). DXA-measured %BF was 39.4 ± 7.2% in women
and 28.6 ± 6.4% in men.

Body composition
VBC achieved the lowest error in estimating %BF with MAE and SD
of 2.16 ± 1.54% and MAPE of 6.4% compared to DXA, with an
overall bias of −0.42%. cBIA 1, 2, and 3 had bias of −0.67%,
−0.12%, and −2.93%, respectively. MAE and SD for these three
devices were 4.48 ± 4.01%, 4.91 ± 8.7%, and 5.85 ± 4.86%, respec-
tively. The bias, MAE, and SD of the pBIA 1, pBIA 2, and ADP
systems were −1.07%, 3.13 ± 2.10%; 0.64%, 4.72 ± 3.0%; and
0.55%, 3.14 ± 2.24, respectively. The key performance measures,
including overall bias, MAE, SD, and concordance correlation
coefficient (CCC) of DXA as compared to the seven devices
evaluated are presented in Table 2. Compared to DXA, VBC
demonstrated very high concordance (CCC= 0.96) in the overall
sample, which was higher than all other methods evaluated,
including ADP (N= 70 for ADP).
Further sub-cohort analyses of the performance of all devices

evaluated for estimating %BF classified by sex, BMI, and ethnicity
are summarized in Tables 2 and 3. When stratified by sex, VBC
continues to show the lowest MAE and MAPE values. VBC has
MAE ± SD 1.88 ± 1.32%, MAPE 6.8% in men and MAE ± SD
2.34 ± 1.64%, MAPE 6.13% in women. VBC also had very good
concordance for both women (CCC= 0.93) and men (CCC= 0.94),
as shown in Table 2.
Table 3 illustrates results stratified by BMI. Once again, in all

three BMI categories VBC achieves the lowest MAE and MAPE
values. BMI < 25 kg/m2 MAE ± SD 2.5 ± 1.8%, MAPE 8.1%. BMI
25–29.9 kg/m2 MAE±SD 1.9 ± 1.4%, MAPE 6.2%. BMI > 30 kg/m2

MAE ± SD 2.2 ± 1.4%, MAPE 5.5%. Table 3 also illustrates results
stratified by race and ethnicity. VBC continues to show the lowest
MAE and MAPE errors out of all methods compared in this study.
White MAE ± SD 2.0 ± 1.5%, MAPE 6.0%. Black MAE ± SD
2.7 ± 1.7%, MAPE 7.9%. All others MAE ± SD 1.9 ± 1.2%,
MAPE 5.8%.
As shown in Fig. 2a VBC achieved the lowest overall mean

absolute error in estimating %BF, which was statistically sig-
nificantly better than all other methods evaluated (p < 0.05 for all
methods), with cBIA 3 yielding the highest error. Furthermore, Fig.
2b shows a pseudo-colored representation of the mean absolute

Fig. 1 Consort diagram.
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error, both overall and stratified by sex, BMI, and ethnicity (green
indicates low error and red indicates high error).
Correlations between %BF evaluated by VBC and DXA among

men and women are shown through scatter plots in Fig. 3a, b,
respectively. VBC achieved very good correlation for both male
and female participants (R2= 0.88 for both sexes). Bland-Altman
plots for VBC are also presented for men (Fig. 3c), women (3d) and
all (3e). Limits of agreement for the union of men and women are
−5.55%, +4.71%. The Bland-Altman plot for men shows nearly no
bias, while that for women shows a small bias (~1% at the
extremes), which is not really clinically or personally significant. By

contrast, larger levels of bias are present in all other methods
(Fig. 4). Individual level validity for all other methods is presented
using Bland–Altman plots in Fig. 4a–f. VBC achieves the tightest
limits of agreement without any statistically significant bias,
whereas all other methods had significant bias (p < 0.05) and
wider limits of agreement.
Finally, Fig. 5 shows repeatability of VBC measurements (a.k.a.

technical error). For each participant we have double measure-
ments for: VBC, cBIA1, cBIA2 and cBIA3. The Bland-Altman plot
shows the mean of two VBC measurements in the X axis and their
difference in Y. Good VBC repeatability is indicated by very tight

Table 2. Comparison of %BF estimates to DXA references stratified by sex.

VBC cBIA 1 cBIA 2 cBIA 3 pBIA 1 pBIA 2 ADP

All

N 134 123 131 131 70 64 70

Bias (%) −0.42 −0.67 −0.12 −2.93 −1.07 0.64 0.55

MAE (%) 2.16 ± 1.5 4.48 ± 4.0* 4.91 ± 8.7* 5.85 ± 4.9* 3.13 ± 2.1* 4.72 ± 3.0* 3.14 ± 2.2*

MAPE (%) 6.40 14.20 15.40 16.70 10.30 14.00 9.70

CCC 0.96 0.80* 0.58* 0.72* 0.92 0.87* 0.92

Men

N 52 46 50 49 27 25 27

Bias (%) −0.17 0.22 1.55 −1.45 −1.41 −4.58 2.24

MAE (%) 1.88 ± 1.3 4.53 ± 5.0* 6.23 ± 13.4* 4.11 ± 3.3* 3.37 ± 2.4 5.01 ± 3.0* 3.50 ± 2.4

MAPE (%) 6.80 18.20 22.60 15.50 13.80 17.40 12.50

CCC 0.94 0.57* 0.29* 0.74* 0.87 0.54* 0.88

Women

N 82 77 81 82 43 39 43

Bias (%) −0.58 −1.20 −1.15 −3.82 −0.85 3.99 −0.51

MAE (%) 2.34 ± 1.6 4.45 ± 3.3* 4.10 ± 3.1* 6.89 ± 5.3* 2.98 ± 1.8* 4.54 ± 2.9* 2.91 ± 2.1

MAPE (%) 6.10 11.80 10.90 17.40 8.20 11.90 8.00

CCC 0.93 0.78* 0.79* 0.62* 0.91 0.79* 0.91

ADP air displacement plethysmography, cBIA consumer bio-impedance analysis, CCC concordance correlation coefficient, MAEmean absolute error, MAPEmean
absolute percent error, pBIA professional bio-impedance analysis, VBC visual body composition. *P < 0.05 in comparison to VBC-DXA. Results are X ± s.d. Bold
entries indicate best results for each row.

Table 1. Subject characteristics.

All Males Females

Total number 134 52 82

White 81 (60.4%) 31 (59.6%) 50 (61.0%)

Black 32 (23.9%) 11 (21.2%) 21 (25.6%)

Ethnicity Asian 9 (6.7%) 5 (9.6%) 4 (4.9%)

Hispanic 4 (3.0%) 2 (3.8%) 2 (2.4%)

American Indian 1 (0.7%) 0 (0%) 1 (1.2%)

Others 7 (5.2%) 3 (5.8%) 4 (4.9%)

Age (years) 43 ± 14.7 43.1 ± 14.4 43.0 ± 14.8

Height (cm) 167.8 ± 10.2 175.6 ± 8.7 163.0 ± 7.6

Weight (kg) 84.0 ± 20.8 92.8 ± 19.7 78.3 ± 19.4

BMI (kg/m2) 29.7 ± 6.5 30.0 ± 5.6 29.5 ± 7.0

Waist circumference (cm) 98.5 ± 15.7 102.2 ± 14.3 96.2 ± 16.3

Hip circumference (cm) 109.4 ± 13.2 108.2 ± 11.5 110.1 ± 14.3

Waist-to-hip ratio 0.90 ± 0.08 0.94 ± 0.08 0.87 ± 0.07

DXA %BF 35.2 ± 8.7 28.6 ± 6.4 39.4 ± 7.2

BMI body mass index, DXA dual-energy x-ray absorptiometry, %BF percent body fat. Results are X ± SD (standard deviation).
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Limits of Agreement (−1.64%, +1.51%) and high R2 (0.99). For
comparison, the Limits of Agreement for the cBIA devices are,
respectively: (−3.56%, +3.74%), (−31.06%, +33.84%) and
(−0.20%, +0.23%) and their R2 values are: 0.97, 0.27, 1.00.

DISCUSSION
There is a need for an accurate, easy-to-use, and widely accessible
tool for assessment of body composition outside of specialized
research facilities. The current study evaluated the performance of
a novel computer-vision based algorithm for estimating %BF from
2D smartphone photographs. Our findings support the validity of
VBC in estimating %BF relative to DXA, the reference used in this
study. VBC had the lowest MAE (2.16 ± 1.54%), highest overall

concordance with DXA (Men CCC, 0.94; Women CCC, 0.93), and
the tightest limits of agreement (LOA, −5.5%, +4.7%) among the
evaluated devices including several BIA systems and ADP.
While multiple other devices are available for capturing a

person’s image and transforming the quantified information into
an estimate of body composition40,41 VBC needs only two
conventional photographs of the participant captured via their
personal smartphone camera. These two images are securely sent
to the cloud where they are: (1) segmented into person and
background, and (2) passed onto a CNN model that automatically
analyzes the images, extracts visual features relevant to body
composition and generates an estimate of %BF. Carletti et al.
described a similar framework to directly estimate %BF from
depth images42. In contrast, VBC does not require specialized or

Table 3. Comparison of %BF estimates to DXA references stratified by BMI and ethnicity.

VBC cBIA 1 cBIA 2 cBIA 3 pBIA 1 pBIA 2 ADP

BMI < 25

N 34 32 33 34 23 11 23

Bias (%) −2.23 −3.64 −3.79 −6.99 −3.34 0.83 −3.00

MAE (%) 2.50 ± 1.8 6.36 ± 3.5 5.75 ± 3.3 7.66 ± 4.6 4.29 ± 2.2 4.41 ± 2.8 3.31 ± 2.2

MAPE (%) 8.10 23.00 19.60 24.50 15.70 16.80 11.90

CCC 0.90 0.54 0.66 0.43 0.84 0.66 0.88

BMI 25–29.9

N 45 40 43 43 21 24 21

Bias (%) −0.30 −1.03 0.76 −5.05 −1.90 −0.70 0.69

MAE (%) 1.90 ± 1.4 3.02 ± 2.3 5.04 ± 14.3 6.00 ± 4.9 2.49 ± 1.4 3.82 ± 3.1 2.30 ± 1.9

MAPE (%) 6.20 10.10 17.00 17.40 8.30 12.90 7.50

CCC 0.94 0.86 0.23 0.39 0.92 0.84 0.92

BMI ≥ 30

N 55 51 55 54 26 29 26

Bias (%) 0.60 1.48 1.40 1.31 1.62 1.68 3.58

MAE (%) 2.16 ± 1.4 4.44 ± 4.8 4.31 ± 3.6 4.60 ± 4.6 2.63 ± 2.0 5.58 ± 2.6 3.67 ± 2.3

MAPE (%) 5.50 11.90 11.60 11.20 7.30 14.00 9.60

CCC 0.95 0.71 0.76 0.74 0.94 0.81 0.89

White

N 81 73 78 78 47 34 47

Bias (%) −0.91 −2.12 −1.09 −4.23 −1.42 −0.30 0.09

MAE (%) 2.00 ± 1.5 4.25 ± 3.3 5.08 ± 10.7 6.00 ± 4.8 3.16 ± 2.0 3.86 ± 2.6 2.76 ± 1.9

MAPE (%) 6.00 13.80 16.10 17.10 10.90 11.30 9.00

CCC 0.96 0.83 0.47 0.69 0.92 0.90 0.93

Black

N 32 31 32 32 15 17 15

Bias (%) 0.47 3.42 2.57 0.98 0.76 2.76 2.54

MAE (%) 2.72 ± 1.7 5.06 ± 5.3 4.31 ± 3.1 5.76 ± 4.2 3.51 ± 2.0 5.31 ± 3.1 4.77 ± 2.9

MAPE (%) 7.90 15.90 13.30 16.00 9.60 17.20 13.30

CCC 0.95 0.76 0.86 0.81 0.89 0.85 0.81

All others

N 21 19 21 21 8 13 8

Bias (%) 0.24 −1.22 −0.25 −3.58 −2.23 0.50 −0.19

MAE (%) 1.98 ± 1.2 4.50 ± 4.1 5.16 ± 4.5 5.42 ± 5.8 2.23 ± 2.3 6.14 ± 3.0 2.59 ± 1.7

MAPE (%) 5.80 13.40 15.80 16.10 8.10 17.00 7.80

CCC 0.96 0.75 0.76 0.67 0.90 0.81 0.91

ADP air displacement plethysmography, cBIA consumer bio-impedance analysis, CCC concordance correlation coefficient, MAEmean absolute error, MAPEmean
absolute percent error, pBIA professional bio-impedance analysis, VBC visual body composition. Results are X ± s.d. Bold entries indicate best results for
each row.
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expensive equipment like depth cameras, but instead, works with
conventional smartphone cameras, making it an accessible tool at
the consumer level.
Camera-enabled smartphones are widely popular, with over 2.5

billion users worldwide43. As such, there is a potential for a tool
like VBC to have wide scale use to better quantify and monitor BF
% in persons across weight classes. Given its ease of use and low-
cost, people can readily measure their body fat; for instance,
biweekly or monthly, and correlate its temporal trend with their
lifestyle habits, such as physical activity, dietary changes and sleep
patterns.
VBC outperformed commercial single frequency BIA systems for

home use as they only capture the leg–leg electrical pathway and
are known to have limited accuracy due to several factors that
include variable participant hydration and use of population-
specific %BF prediction equations44,45. The evaluated multi-
frequency whole-body pBIA systems overcome some of the
limitations present in the cBIA devices, although VBC still
outperformed them both. The Bod Pod ADP device evaluated at
the PBRC site is a recognized reference method for some types of
studies, notably those in which radiation exposure is a concern,
and at centers without available DXA systems46. As with the other
evaluated devices, VBC also outperformed Bod Pod when using
DXA as the reference in the current study. Some of the differences
between VBC, BIA and ADP have to do with the underlying models
(2-compartment vs 4-compartment) and the (often proprietary)
prediction equations. Note that VBC does not use a single, hand-
designed equation, but a complex, highly non-linear, automati-
cally optimized function expressed in CNN form. Given these initial
findings, the VBC method appears to function at least on par, if
not better, than professional systems such as pBIA and ADP.
While VBC performed well in the current study, several

limitations of the device and our study should be noted. The
CNN model was trained with photos of people wearing minimal,
form-fitting clothing. Wearing full length sleeves, pants, shorts
covering parts of the stomach, abdomen or thighs, or loose

clothing may yield inaccurate results. Extremely dark or bright
images can hide important visual information and reduce the
model accuracy. Other variables that may cause inaccuracies are
extreme camera tilt, camera positioned too far from the
participant, holding the belly in, scanning after a large meal or
an intense workout, flexing muscles or large deviations from the
canonical “A” pose. The VBC model does not generate %BF
estimates above 64%. The model produces a single number for %
BF estimation, but currently does not provide any details on fat
localization. For instance, it does not differentiate between visceral
and subcutaneous adipose tissue.
As a reference we use DXA because of its popularity in similar

clinical studies and its reasonable accuracy. We acknowledge the
potential systematic bias of using DXA on which the algorithm or
CNN was trained to assign labels to VBC images, on the results of
agreement with DXA in the test set. An MR-based 4-model
reference may have produced a more accurate reference at an
increased cost and reduced sample size.
The study was limited to 134 participants with weight less than

400 lbs (181 kg); a larger and more diverse sample may have
further strengthened our findings. However, the study did have
enough power to reach statistical significance for the primary
outcome of evaluating the performance of VBC and various other
methods against DXA as the reference standard.
This study presents the first validation of a novel, accessible,

and easy-to-use system for estimating an individual’s total body
fat using only two photographs taken with a conventional
smartphone. The VBC method had the lowest mean absolute
error and standard deviation and the tightest limits of agreement
when compared to six commercially available tools. Percent fat
estimated by VBC also had stronger concordance with those by
DXA compared to the other methods and BMI. No significant bias
was present for VBC relative to DXA according to a Bland–Altman
analysis. These results support the use and feasibility of VBC for at-
home measurement and monitoring of total body fat.

METHODS
Trial design and oversight
The VBC analysis system was examined in a prospective, clinical validation
study conducted at two clinical trial sites: Massachusetts General Hospital
(MGH), Harvard University, and Pennington Biomedical Research Center
(PBRC), Louisiana State University. The study protocol was approved by the
Advarra Institutional Review Board (Columbia, MD) as well as the MGH and
PBRC Institutional Review Boards. All participants provided written
informed consent. The authors also affirm that human research
participants provided informed consent for publication of the images in
Fig. 6.
Participants were contacted by a recruiter who performed pre-screening

based on demographic information as well as inclusion and exclusion
criteria. Eligible participants were asked to arrive at their respective facility
for a single 2–3-h visit following a 4-h fast. Upon arrival, they were
provided a copy of the consent form and a private room for the consenting
process. Those who agreed to participate completed the following
assessments for %BF: DXA and VBC scans, three consumer-grade bio-
impedance analysis (cBIA) smart scale evaluations, two professional BIA
(pBIA) system evaluations, and air displacement plethysmography (ADP), in
that order. ADP was performed only at PBRC. Women with reproductive
potential also completed a urine pregnancy test prior to undergoing these
assessments.

Trial participants
Participants were healthy adults recruited using a combination of web-
based questionnaires, direct phone calls, media, and advertising in local
communities. Included men and women were generally in good health,
between the ages of 21 and 80 years, weighed less than 400 lbs (181 kg),
and willing to comply with study procedures. Potential participants were
excluded if they had medical implants such as a pacemaker or a total knee
replacement or had previously undergone body altering procedures such
as arm or leg prosthesis, amputation, or breast augmentation. Participants

Fig. 2 Accuracy of different measurement methods. Mean
absolute errors (MAE) of the various methods evaluated with DXA
as the reference a. MAE of various methods in comparison to DXA
stratified by sex, BMI, and ethnicity b. The colors are interpolated
linearly from green (low error) to red (high error). We defined an
acceptable error range as ≤3% (dark green). This value was selected
as the mean MAE for ADP and the best of the pBIA devices. Light
green, white, and red shadings indicate errors outside of this range.
*p < 0.05 in comparison to VBC-DXA MAE.
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Fig. 3 Comparison of %BF between VBC and DXA. Correlation between %BF by VBC and DXA, for a men and b women. The dashed line is
identity and the solid line is the automatically fitted regression line. The two lines are very close to one another, and the correlations in both
figures are significant at p < 0.0001. Bland-Altman analysis of the difference between %BF by VBC and DXA, for cmen, d women, and e all. The
horizontal black lines are at the mean ± 1.96 SD and the dashed gray lines are the fitted regression lines described by the equation in
the panel.
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were also excluded if they took loop diuretics within 6 h of their scheduled
visit, had a diagnosis of heart failure, or were undergoing active cancer
treatment, see Fig. 1 for our consort diagram.

Trial procedures
For each of the participants, trained facility staff acquired the following
data: demographic information such as age, sex, ethnicity, height, and
weight; circumference measurements taken at the waist, hip, arm, and
thigh; 2D photographs captured by a smartphone camera; %BF estimates
from consumer and professional BIA scales, ADP, and DXA; only
participants at PBRC underwent ADP (N= 70). Note that DXA images
were never used, only their derived %BF.

Anthropometry
Circumference measurements were taken at the waist, hip, arm, and thigh
by trained staff at conventional anatomic locations. Measurements were
recorded in centimeters. Body circumferences were acquired to ensure a

good distribution of body sizes and shapes. However, those measurements
were not used in the VBC algorithm.

VBC scan
Participants were dressed in minimal, form-fitting clothing (Fig. 6) without
socks, shoes, or any protruding wearables (watches, jewelry, etc.), such that
the mid-thigh and belly button areas were visible to the smartphone
camera. Each participant was asked to stand in an “A” pose and then had
four photographs (front, back, left-side, and right-side profiles) taken with
an iPhone-10 (Apple, Inc.) front-facing camera with their faces out of frame.

Computer vision model
The body composition estimation algorithm consists of a bespoke
convolutional neural network (CNN)47,48 that was optimized (trained) on
internal data (not the external trial data) to estimate %BF directly from two
input photographs (front and back) of the user standing in an A pose as
shown in Fig. 6. The algorithm does not need 3D scans nor professional-

Fig. 4 Bland-Altman analyses of the differences between %BF by DXA and the six methods evaluated for estimation of %BF. a cBIA 1;
b cBIA 2; c cBIA 3; d pBIA 1; e pBIA 2; f ADP. The horizontal black lines are at the mean ± 1.96 SD and the dashed gray lines are the fitted
regression lines.

M.D. Majmudar et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    79 



quality photographs. Photos taken with personal smartphones suffice.
Photos were acquired through a smartphone positioned 4–6 feet away
from the participant above their knee height. The algorithm was trained to
be robust to occlusions (e.g., from furniture), cropping (e.g., feet or head
out of frame) and varying participant-phone distances. For the training set,
both iPhones and Android phones are used, to ensure generalization. Of
note, the side images are used to generate a three-dimensional body
model (using a different computer vision algorithm), which is a feature of
the commercial product (Amazon Halo); but those images are not used for
estimation of %BF. The VBC %BF algorithm was developed using the
Python programming language (Python Software Foundation; available at
www.python.org) and uses the PyTorch machine learning framework
(available at www.pytorch.org and maintained by Meta) for training and
evaluating the CNN. The developed model was trained on machines with
modern graphic processing units (GPU) for speed. Figure 7 illustrates the
training and the accuracy assessment (validation) phases.

Annotated datasets
We have collected two datasets: an interna; training dataset and an
external testing dataset. The training dataset has multiple participants

covering a wide range of BMI, body fat, body shapes, camera angles,
camera distance, illumination conditions, environments etc. The testing
dataset is external, collected at the two participating trial sites. Each data
entry consists of: (1) Four smartphone images of the participant in an “A”
pose, and (2) Associated reference measurements for total body fat
percentage. The two datasets are completely disjoint and no test data was
ever used during training or algorithm optimization.

Person-Background segmentation. The first step in the processing chain is
to separate the foreground person from the background. This is achieved
by a bespoke CNN that was trained on a pixel-wise labelled subset of the
training set to achieve >98% test pixel-wise accuracy. After background
removal, the front and back photos are normalized to a canonical size to
remove the effect of varying camera distance (perspective foreshortening).

Training to estimate body fat. Using the normalized front and back photos
as inputs for training, a second CNN model was pre-trained to
automatically extract discriminative visual features (shape, texture)
relevant to body composition. Notice that with modern deep learning
techniques it is no longer necessary to design visual features (filter banks
etc.) by hand. The architecture of our CNN uses multiple convolutional
blocks with additional branches for multi-scale feature extraction. The
multi-scale extension allows the network to automatically select and utilize
high resolution image features and capture fine details (e.g., skin bumps)
across the body fat spectrum. This CNN is trained to be resilient to noise in
the input images, robust to expected variations in illumination and camera
orientation, and to work across different phone models, camera devices
and color-spaces (grayscale/RGB). Next, transfer learning is applied to fine-
tune the initial, pre-trained model using DXA %BF training data. DXA here
is used only to provide reference measurements of body fat, and DXA
images are never used.

Accuracy validation. In the accuracy assessment stage (Fig. 7), for each
trial participant a pair of front and back photos are sent into the trained
Deep Learning Model and the output is the estimated %BF measurement.
The accuracy of these estimates is calculated on the test set, by
comparison with DXA-obtained reference %BF measurements.

Runtime (live mode). During live use, only the top branch of the validation
flow diagram (Fig. 7) is used as there are no reference measurements.

Why use DXA measurements as reference?
DXA measures fat mass, i.e. triglyceride, while conventional MRI measures
adipose tissue volume. Most body fat is stored in adipose tissue, but not all,
thus MRI and DXA do not measure exactly the same thing49. Fat mass is
what most physiologists are interested in as it connects with energy

Fig. 5 Bland-Altman analysis of repeated VBC measurements to assess technical error.

Fig. 6 Example smartphone images. The VBC algorithm requires
images of the user’s front and back while wearing minimal clothing
and holding an “A” pose as inputs to the model.
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balance. Both the MRI and the DXA fat estimation paths have errors: (1) in
MRI because tissue volumes need to be segmented in 3D, most often by
hand, (2) in DXA because 3D mass information is extrapolated from 2D
x-ray images. Also, capturing full-body MR images at a useful resolution
takes many minutes. Finally, DXA represents a good quality-cost-speed
compromise, as demonstrated by its popularity in clinical research50. Since
no radiological images are used anywhere in our algorithms, extracting
reference body fat measurements from multiple sources is an alternative.

Why use front and back images?
In our approach there is no manual design and selection of visual features.
However, we have observed empirically that the algorithm yields the
highest accuracy when the front and rear images are used, and the side
views do not have much influence on the final accuracy.

Dual-Energy X-ray absorptiometry
Total body fat was measured on each participant in the test set with a
Hologic Discovery A or Hologic Horizon A DXA system (Hologic, Inc.,
Marlborough, MA, USA). Both DXA systems were calibrated and operated
according to manufacturer guidelines. Attired in minimal clothing,
participants were asked to lay flat on the DXA table for about 10min
while the device performed the scan. The participants are ensured to fit
entirely within the DXA field of view. All scans were evaluated with Hologic
Apex software version 5.6 and the National Health and Nutrition
Examination Survey (NHANES) Body Composition Analysis calibration
feature was disabled.

Bioimpedance analysis
Three consumer weight scales capable of BIA-based body composition
analysis were included in the protocol: FitBit Aria 2 (Fitbit, San Francisco,
CA); Tanita BF-684W (Tanita, Tokyo, Japan); and Renpho ES-24M-W/B
(Joicom Corporation, Anaheim, CA). These scales are designated as cBIA 1,
cBIA 2, and cBIA 3, respectively, in the sections that follow. These scale
models were chosen based on their popularity with customers. We
decided to use multiple BIA scales to assess the level of discordance

between their measurements for the same participant. All scales were
available at both trial sites. Participants were weighed in duplicate on the
consumer scales, and the results were averaged for analyses. All
participants also underwent professional BIA (pBIA) at PBRC with an
InBody S10 (InBody Co., Seoul, Korea) and at MGH with a RJL system
(Quantum IV, RJL Systems, Clinton Township, MI, USA.). The RJL system
uses a single frequency (50 Khz) and four gel adhesive electrodes. Instead,
InBody is multi-frequency and uses contact electrodes. InBody and RJL are
designated as pBIA1 and pBIA 2, respectively, in the sections that follow
and were analyzed separately. Both InBody S10 and RJL Quantum IV use a
tetrapolar 8-point tactile electrode system. The device measures impe-
dance, resistance and reactance in body segments at multiple frequencies.
Each participant was measured once following cleaning of the electrodes
with alcohol.

Air displacement plethysmography
Participants who were evaluated at PBRC (N= 70) also had %BF assessed
with the BOD POD ADP device (BodPod Gold Standard Body Composition
Tracking System, COSMED, Rome, Italy). In addition to the specific form-
fitting clothing for this study, participants put on a swim cap before
entering the device. The BOD POD body composition test was performed
once with each evaluation including two measurements of body volume
that were averaged and then corrected for thoracic gas volume using the
system software (v4.5.0). Fat mass and %BF were calculated from body
density by BOD POD software using Siri’s equation51. We include ADP and
BIA body fat estimations here for comparison, however, it should be clear
that those estimates depend strongly on the exact nature of the prediction
equations used within the device.

Statistical methods
Descriptive statistics were computed for the participant characteristics
stratified by sex, where appropriate. Fixed bias (or mean error) was
calculated as the difference between %BFDXA and %BF estimates from all
other methods evaluated: VBC, cBIA1–3, pBIA1–2, and ADP. Mean absolute
error (MAE), standard deviation (SD) of absolute error, and mean absolute
percent error (MAPE) were calculated for all %BF estimates and stratified

Fig. 7 Different phases of our algorithm. Block diagrams illustrating the data flow for different phases of our algorithm: training a, testing
b, and live use c. DXA images are never used.
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by sex, BMI, and race. Wilcoxon signed rank test was used to compare
matched samples to assess whether their population mean ranks differ
(i.e., paired difference test) for the overall study population and stratified
by sex. Pearson correlation and Lin’s concordance correlation coefficient
(CCC) between DXA and all other methods were also calculated and
stratified by sex. The method of Meng et al.52 was used to determine
whether VBC was significantly better correlated to the criterion method of
DXA compared to the cBIA1–3, pBIA1–2, and ADP measurements. Bland-
Altman plots were used to determine the mean difference and 95% limits
of agreement (LOA) between DXA reference standard and VBC as well as
all other methods. No adjustment for multiple comparisons. All analyses
were conducted using Microsoft Excel (Microsoft, Inc., Redmond, WA) and
Python. Significance was set at an alpha level of 0.05, 2-tailed.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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