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Abstract
Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family and the genus Flavivirus. Infection with ZIKV causes a mild, self-limiting

febrile illness called Zika fever. However, ZIKV infection has been recently associated with microcephaly and Guillain-Barré syndrome.

Vaccines for the disease are a high priority of World Health Organization. Several studies are currently being conducted to develop a

vaccine against ZIKV, but until now there is no licensed ZIKV vaccine. This study used a novel immunoinformatics approach to identify

potential T-cell immunogenic epitopes present in the structural and nonstructural proteins of ZIKV. Fourteen T-cell candidate epitopes

were identified on ZIKV structural and nonstructural proteins: pr36−50; C61−75; C103−117; E374−382; E477−491; NS2a90−104; NS2a174−188;

NS2a179−193; NS2a190−204; NS2a195−209; NS2a200−214; NS3175−189; and NS4a82−96; NS4a99−113. Among these epitopes, only E374−382 is a

human leukocyte antigen (HLA) type I restricted epitope. All identified epitopes showed a low similarity with other important flaviviruses

but had a high conservation rate among the ZIKV strains and a high population coverage rate. Therefore, these predicted T-cell epitopes

are potential candidates targets for development of vaccines to prevent ZIKV infection.
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Introduction
Zika virus (ZIKV) is an arbovirus transmitted in urban cycles to

humans by the bite of infected female mosquitoes of the Aedes
genus, mainly Aedes aegypti. ZIKV is a positive-sense, single-

strand RNA virus classified in the genus Flavivirus, family Flavi-
viridae [1–3]. The virus genome contains one open reading

frame, which is translated into a large polyprotein that should
This is an open access arti
be cleaved by viral and cellular proteases in order to generate

three structural proteins (capsid, membrane and envelope
proteins) and seven nonstructural proteins (NS1, NS2a, NS2b,

NS3, NS4a, NS4b and NS5) [4].
ZIKV was first isolated in 1947 in Uganda [5], and six de-

cades after its discovery, ZIKV caused an epidemic in the
Federated States of Micronesia [6]. In 2013 the virus was
introduced to Brazil, and after this event, a major pandemic in

the Americas was observed [7–9]. The spread of ZIKV in the
Americas was associated with the appearance of severe adverse

outcomes, such as congenital Zika syndrome and Guillain-Barré
syndrome [10–12]. Additionally the possibility of sexual

transmission has intensified efforts to develop a vaccine for
ZIKV [13,14]. Until now several approaches have been used to

develop ZIKV vaccine, such as DNA and messenger RNA
vaccines, inactivated ZIKV strains and recombinant proteins

[15–17]. In general these vaccines are immunogenic and able to
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induce protection in mice and nonhuman primates after chal-

lenge. However, vaccines developed using these approaches
have yet to complete phase 2 clinical trials [18,19]. In addition,

the success of preclinical test of these vaccines—the devel-
opment of an effective ZIKV vaccine—could be complicated by

previous immunity against other flaviviruses such as Dengue
virus (DENV) [20–22]. Additionally, the antibody-dependent
enhancement (ADE) phenomenon could confound the devel-

opment of any flavivirus vaccine [23].
Traditionally vaccines have been developed by isolating one

or more antigenic components from a given pathogen and
checking whether these components are able of inducing a

protective immune response. Although this approach has pre-
sented a series of successes throughout the history of vacci-

nology, the knowledge generated with the new genomic,
transcriptomic and proteomic technologies has contributed to
the advancement of vaccinology and the production of more

effective and safe vaccines [24–26]. One of the most promising
approaches is the use of computational tools that allow the

identification of genes in the genome of different pathogens
encoding proteins with antigenic potential. This approach,

called reverse vaccinology (Rvac), is a direct consequence of
new ‘omic’ technologies and is currently recognized as a

promising technique for the theoretical determination of pro-
teins or peptides that have a potential for induction of an im-

mune response. The use of Rvac could reduce time and cost
related to development of new vaccines [27–33]. Therefore,
Rvac can find important peptide sequences that can be used in

the development of new vaccines [33].
To overcome the confounding effects of cross-reactivity

between DENV and ZIKV, the potential influence of a previ-
ous antiflavivirus immunity on the outcome of ZIKV infection,

the difficulty that this cross-reactivity implies in the develop-
ment of vaccines and diagnostic tests of high sensitivity and

specificity, we used the strategy of Rvac to find conserved,
exclusive and potential immunogenic regions present in the
structural and nonstructural proteins of ZIKV. These regions

could be used as a guide to develop new vaccines and diagnostic
technologies for the disease.
TABLE 1. Genomic sequences of flaviviruses included in this

study

Vector Name GenBank accession no.
Materials and methods
Tick Omsk hemorrhagic fever virus NP_878909.1
Tick-borne encephalitis virus ANN44512.1

Mosquito Dengue virus serotype 1 AGN94865.1
Dengue virus serotype 2 AGE89225.1
Dengue virus serotype 3 AHG23238.1
Dengue virus serotype 4 ANK35834.1
Japanese encephalitis virus ANH21067.1
St Louis encephalitis virus AIW82235.1
West Nile virus ALA10710.1
Yellow fever virus AFH35033.1
Zika virus ANC90426.1
T-cell epitope prediction
T-cell epitopes of all structural and nonstructural protein se-
quences of a Brazilian ZIKV strain (PE243/2015; GenBank

accession no. ANC90426.1) were predicted by using the
TepiTool tool available in the Immune Epitope Database (IEDB)

Analysis Resource (http://tools.iedb.org/tepitool) [34]. MHC-I
and MHC-II are highly polymorphic molecules with very
© 2019 Published by Elsevier Ltd, NMNI, 29, 100506
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different allele specificity. Therefore, all predictions were per-

formed to cover polymorphic loci using the most representa-
tive alleles in each class. The NetMCHpan method was used for

MHC-I binding predictions and the NetMHCpanII for MHC-II
binding predictions. A binding affinity threshold of 500 nM

was selected as the cutoff for MHC-I binding and a 1000 nM
cutoff for MHC-II binding, according to parameters recom-
mended by TepiTool. The number of binding human leukocyte

antigen (HLA) I and HLA-II alleles was recorded for each
epitope.

Epitope specificity analysis
The selected epitopes for ZIKV were compared for similarity

with seven viruses belonging to family Flaviviridae, genus Flavi-
virus (Table 1). The full polyprotein sequences of these viruses
were retrieved from GenBank (http://www.ncbi.nlm.nih.gov/

genbank) and submitted to epitope conservation analysis using
the Epitope Conservancy Analysis tool available online at the

IEDB Analysis Resource (http://tools.iedb.org/conservancy)
[35]. Data from previous studies have shown that epitopes with

a high degree of similarity in amino acid sequences and three-
dimensional structures could be recognized by cross-reaction

antibodies [36]. Structural bioinformatics analysis showed
cross-reactivity between allergenic proteins available with
sequence identity >60% [37]. Therefore, only epitopes that

showed a similarity of <60% with all other flaviviruses were
considered to be specific for ZIKV and used for downstream

analysis. Therefore, epitopes with similarity �60% with one or
more virus were excluded from downstream analysis.

Selection of immunogenic epitopes
The epitopes with low identity to other flaviviruses and a po-

tential to interact with four or more HLA-I or HLA-II alleles
were assessed for their antigenicity through the VaxiJen server,
version 2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/

VaxiJen.html). For antigenicity analysis, a threshold of �0.5
was adopted, which corresponds to an accuracy of 87% for

viruses [38]. The epitopes with values of �0.5 were submitted
nses/by-nc-nd/4.0/).
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to a conservation analysis of amino acid sequences among South

American and African ZIKV isolates. Nucleotide and amino acid
sequences of 684 ZIKV isolates were obtained from GenBank

(https://www.ncbi.nlm.nih.gov/genbank) for comparative ana-
lyses using Epitope Conservancy Analysis tool available at the

IEDB Analysis Resource (http://tools.iedb.org/conservancy). All
epitopes presenting antigenic potential were also evaluated for
theoretical determination of toxicity by using ToxinPred. This

tool has an accuracy of 90% (http://crdd.osdd.net/raghava/
FIG. 1. Schematic representation of entire in silico approach for predictions a

proteins.
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toxinpred) [39] and is widely used in the context of Rvac

[40–42].
The selected epitopes were submitted to population

coverage determination based on the group of alleles with
which each epitope can interact according to the initial pre-

diction using TepiTool. The calculation was performed using
the Population Coverage Analysis tool of the IEDB [43]. Finally,
the predicted epitopes on the M, E and NS1 proteins were

evaluated for the solvent accessible surface (SAS) in the
nd selection of T-cell epitopes on structural and nonstructural Zika virus

© 2019 Published by Elsevier Ltd, NMNI, 29, 100506
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corresponding protein using UCSF Chimera software version

1.12 and the 3-D cryostructure of E and M protein trimer
(5IRE) and NS1 dimer protein (5GS6) deposited on the Protein

Data Bank server.
Results
As illustrated in Fig. 1, a nine-step immunoinformatic approach

was used to identify T-cell epitopes with the potential to
contribute to the development of vaccine candidates and

diagnostic tests for ZIKV. Using TepiTool, 1457 epitopes were
predicted within ZIKV polyprotein. Among these predicted
epitopes, 944 (64.79%) were predicted for binding to HLA-I

and 513 for HLA-II (31.21%). A total of 311 epitopes were
identified from structural proteins and 1146 epitopes from
TABLE 2. T-cell epitopes predicted from Zika virus structural

and nonstructural proteins by TepiTool HLA-I and HLA-II

prediction programme

Protein

No. of predicted epitopes

HLA-I HLA-II

C 40 19
PR 21 74
M 31 12
E 104 10
NS1 75 49
NS2a 96 35
NS2b 35 18
NS3 151 93
NS4a 43 20
2k 8 2
NS4b 96 41
NS5 244 140
Total 944 513

HLA, human leukocyte antigen.

© 2019 Published by Elsevier Ltd, NMNI, 29, 100506
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nonstructural proteins (Table 2). Conservation analysis of

predicted epitopes showed that 1019 (88.92%) had a higher
similarity degree with other flaviviruses (�60% similarity)

(Supplementary Table S1). Therefore, only 438 predicted epi-
topes (11.08%) had a similarity of <60% with structural and

nonstructural proteins from other flaviviruses. Among these
epitopes, only 187 (42.69%) showed a potential to interact with
four or more HLA-I or HLA-II alleles (Fig. 2 and Supplementary

Table S2). The data showed that HLA-II predicted epitopes are
probably able to bind more alleles than the HLA-I predicted

epitopes.
The immunogenicity potential of all 187 epitopes was eval-

uated using the VaxiJen server. The results showed that 87
epitopes (46.52%) were not predicted to be immunogenic.

Thus, the number of candidates was reduced to 100 peptides
with a range of antigenic potential score of between 0.5011 and
1.9567 (Fig. 3). The theoretical determination of toxicity was

performed using ToxinPred, and only the epitope pr43−51

showed a potential to trigger toxicity in vivo (Supplementary

Table S3). Therefore, this epitope was excluded from the
next analysis.

The 99 selected epitopes were submitted to a new con-
servation analysis using ten more sequences of DENV serotype

1, ten of DENV serotype 2, ten of DENV serotype 3, ten of
DENV serotype 4, ten of Japanese encephalitis virus, four of

Omsk hemorrhagic fever virus, nine of tick-borne encephalitis
virus, four of West Nile virus, 16 of St Louis encephalitis virus
and eight of yellow fever virus (Supplementary Table S4). Only

eight epitopes presented a similarity of �60% with other fla-
vivirus sequences; these were excluded from downstream

analysis. These immunogenic epitopes were submitted to an
analysis of conservation using 684 strains of ZIKV

(Supplementary Table S5). The analysis showed a high degree of
FIG. 2. Number of HLA-I and HLA-II

binding alleles by each predicted epi-

topes. Predicted epitopes with similarity

less than 60% with structural and

nonstructural proteins from other flavi-

viruses and theoretical number of binding

HLA-I or HLA-II for each epitope are

shown. Dotted line represents cutoff

value (four or more binding HLA-I or

HLA-II alleles). Only epitopes above

cutoff were submitted to antigenicity

calculation through VaxiJen server

version 2.0 (http://www.ddg-pharmfac.

net/vaxijen/VaxiJen/VaxiJen.html). HLA,

human leukocyte antigen.

nses/by-nc-nd/4.0/).
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FIG. 3. Antigenicity prediction score

computed by VaxiJen server. Antigenicity

score was calculated by Vaxijen server

version 2.0 (http://www.ddg-pharmfac.

net/vaxijen/VaxiJen/VaxiJen.html).

Dotted line represents cutoff value (>

0.5). Only epitopes above cutoff were

submitted to conservation analysis of

amino acid sequence between different

South American and African Zika virus

strains.
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identity of all 100 epitopes among the ZIKV strains
(90.89–100%) (Fig. 4). The evaluation of the population

coverage based on the HLA alleles that each epitope can
theoretically interact with varied from 17.68% and 59.52% for

the epitopes predicted for HLA-I and from 59.39% and 99.97%
for the epitopes for HLA-II. The HLA-II–predicted epitopes

showed the highest coverage (�50%) if compared to HLA-I–
predicted epitopes (�50%) (Fig. 5). The 91 selected epitopes

and their properties are listed in Supplementary Table S6.
To gain insight into the spatial localization of the selected

epitopes on E, M and NS1 proteins, these epitopes were

located in the cryostructure of their respective proteins. The
localization showed that all epitopes were exposed on the

protein structures (Supplementary Fig. S1). The SAS calculation
showed a high value of all epitopes (1471.71 ± 309.2) (Table 3).

In order to identify the most promising candidates for the
development of future vaccines and/or to create diagnostic
FIG. 4. Amino acid sequence identity of predicted epitopes among Zika virus (

Conservancy Analysis tool at Immune Epitope Database (IEDB) (http://too

included in this analysis. (A) Amino acid sequence identity of predicted epit

epitopes for HLA-II alleles. HLA, human leukocyte antigen.

This is an open access artic
tests to identify ZIKV, the selected epitopes were ranked.
Further selection of epitopes with conservation rate �95%

among the ZIKV strains, population coverage >50%, antigenic
score �1.0 and SAS �1050 �A2 (in this case, epitopes for M, E

and NS1 proteins) resulted in a final list of 14 candidates epi-
topes (Table 4). These epitopes were located on C (2/14.3%), E

(2/14.3%), prM (1/7.1%), NS2a (6/42.9%), NS3 (1/7.1%) and
NS4a (2/14.3%) proteins. Among these epitopes, only epitope

E374−382 was a HLA-I–predicted epitope.
Discussion
ZIKV is a mosquito-borne Flavivirus belonging to the Flaviviridae

family [5]. It has been classified as an emerging pathogen
because of its fast spread across the Americas as well as its
association with cases of Guillain-Barré syndrome and prenatal
ZIKV) isolates. Peptide conservation analysis was performed by Epitope

ls.iedb.org/conservancy). Six hundred eighty-four ZIKV isolates were

opes for HLA-I alleles. (B) Amino acid sequence identity of predicted

© 2019 Published by Elsevier Ltd, NMNI, 29, 100506
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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FIG. 5. Classification of predicted epitopes based on population

coverage rate. Selected epitopes were submitted to population

coverage determination based on group of alleles that each epitope can

interact according to initial prediction using TepiTool. Calculation was

performed using Population Coverage Analysis tool of Immune Epitope

Database (IEDB).

TABLE 3. Predicted epitopes for proteins E, M and NS1 and

calculation of SAS

Protein Position Epitope HLA class SAS (Å2)

M 2 VTLPSHSTR I 1014.30
60 KVIYLVMIL I 968.19
51 WLLGSSTSQKVIYLV II 1430.80
56 STSQKVIYLVMILLI II 1386.61

E 46 TTVSNMAEV I 1187.39
164 RAKVEITPNSPRAEA II 1886.30
198 FSDLYYLTMNNKHWL II 1742.05
269 LAGALEAEMDGAKGR II 1569.30
276 EMDGAKGRLSSGHLK II 1776.53
344 QMAVDMQTLTPVGRL II 1376.53
374 MMLELDPPF I 1217.23
477 LNTKNGSISLMCLAL II 1252.47

NS1 58 SSVSRMENIMWRSVE II 1794.59
84 VQLTVVVGSVKNPMW II 2026.50
125 RAAKTNNSF I 1446.91

HLA, human leukocyte antigen; SAS, solvent-accessible surface.
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microcephaly in ZIKV-endemic regions [46–48]. Therefore,

there is an urgent need for vaccines against ZIKV infection
[49–52]. Different immunoinformatics approaches aiming to
identify the immunogenic peptides in the context of Rvac have

been reported [40,44,53–57]. However, information about the
prediction and selection of exclusive epitopes in ZIKV struc-

tural and nonstructural proteins has not yet been published. In
this study, we used several bioinformatic tools to identify

immunoreactive epitopes within ZIKV structural and
nonstructural proteins and to see that they have no similarity

with epitopes from other important flaviviruses. Therefore,
these epitopes could be used to develop new vaccines and

diagnostic tests for ZIKV.
© 2019 Published by Elsevier Ltd, NMNI, 29, 100506
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
The cross-reactivity of some antibodies is related to the high

similarity between the amino acids and the tridimensional
structure between epitopes [36]. The identification of exclusive

epitopes for the development of ZIKV vaccines may contribute
to avoid the ADE observed in some flaviviruses infections. The

ADE predicts that previous infection with a flaviviruses could
contribute to virus propagation in a subsequent infection by
another related flaviviruses [58–60]. Although there are no

definitive data that indicate that the ADE in humans, the overlap
of Flavivirus-endemic areas [61] makes the ADE an important

challenge in the elaboration of a vaccine candidate against ZIKV
[62]. In this sense, it is reasonable to propose a vaccine plat-

form based on epitopes to ZIKV that could induce an effective
immunologic response without any cross-reacting activity

against other flaviviruses.
Using in silico analysis, several groups have predicted ZIKV-

specific mouse or human T-cell epitopes within E

[40,44,54,63], NS2a [63], NS5 proteins [56] or the entire ZIKV
polyprotein [45,55,64–67]. In this study, we found 91 epitopes

with immunogenic properties on structural and nonstructural
ZIKV proteins. Twenty-four epitopes had previously been

identified (Supplementary Table S7). These studies showed that
some epitopes (pr47−55, M56−70, E46−54, NS2a43−51 and

NS519−27) were able to induce T-helper 1 type cytokines,
including interferon gamma and/or tumor necrosis factor alpha

secretion by CD4+ and CD8+ T cells in mice [63–65,67].
The data we present here show that the predicted epitopes

for HLA-II binding are likely to bind to more alleles than the

predicted epitopes for HLA-I binding. This could be related to
the structure of the HLA-I and HLA-II molecules. The open

structure of the binding groove and the longer length of HLA-
II–bound peptides allow greater flexibility in binding and asso-

ciation with more HLA-II alleles [68]. Therefore, this could be
responsible for the greater population coverage showed by

predicted binding HLA-II epitopes (Fig. 5). It also identified a
high number of predicted epitopes on the NS5 protein (384/
26.36%). This result is probably the result of the length and

immunogenicity of this protein [69–71]. The NS5 protein is the
most conserved nonstructural protein of flaviviruses [72,73].

Therefore, because of the high conservation rate between the
NS5 sequences of flaviviruses, only ten unique epitopes were

identified on ZIKV NS5 protein (Supplementary Table S6).
Determination of the SAS is important to identify candidate

epitopes exposed in the structural proteins and the NS1
nonstructural protein. Exposed epitopes are more readily

recognized by antibodies, and they are probably potential
candidates for vaccine and diagnostic test development [74,75].
Previous studies showed that the interaction area of broadly

neutralizing antibodies to DENV epitopes on protein E ranges
from 1050 to 1400 �A2 [76]. Most of the epitopes identified in
nses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLE 4. List of candidate T-cell epitopes predicted from ZIKV structural and nonstructural proteins

Protein Position Epitope
HLA
class

Antigenic
score

Conservation among
ZIKV strains (%)

Population
coverage (%) SAS (Å2) Reference

E 374 MMLELDPPF I 1.1639 100 59.52 1.217.23 [40,44]
477 LNTKNGSISLMCLAL II 1.7899 99.46 92.7 1.252.47 This study

C 61 PSLGLINRWGSVGKK II 1.4993 99.98 74.37 — This study
103 RRGADTSVGIVGLLL II 1.1073 98.47 93.45 — [45]

pr 36 IQIMDLGHMCDATMS II 1.0307 99.59 79.11 — This study
NS2a 90 LVSFIFRANWTPRES II 1.6900 99.88 99.5 — [45]

174 LATCGGFMLLSLKGK II 1.2330 99.80 99.3 — This study
179 GFMLLSLKGKGSVKK II 1.0070 99.78 62.28 — This study
190 SVKKNLPFVMALGLT II 1.3171 99.91 99.78 — This study
195 LPFVMALGLTAVRLV II 1.3379 99.50 99.69 — [45]
200 ALGLTAVRLVDPINV II 1.6769 99.55 97.2 — [45]

NS3 175 PVECFEPSMLKKKQL II 1.1434 99.82 98.09 — This study
NS4a 82 GFGMVTLGASAWLMW II 1.0313 99.97 99.6 — This study

99 EIEPARIACVLIVVF II 1.1164 100 94.92 — [45]

HLA, human leukocyte antigen; SAS, solvent-accessible surface; ZIKV, Zika virus.
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M, E and NS1 proteins have a larger exposed surface area

(Table 3). Therefore, it is possible that antibodies produced
after ZIKV infection recognize these epitopes.

An ideal candidate ZIKV vaccine will be able to induce virus-
specific immune response to all ZIKV strains [77]. Our analysis
showed 91 potentially immunogenic epitopes present in the

structural and nonstructural ZIKV proteins. Thus, considering
these peptides are highly conserved among the 684 strains

analysed in this study (90.89–100%), they are likely to be used
in a vaccine formulation to induce protective immunity against

any ZIKV strain. In order to identify the most promising can-
didates, we listed the epitopes that have a greater number of

desired characteristics (conservation rate �95% among the
ZIKV strains; population coverage >50%; antigenic score �1.0

and SAS �1050 �A2). The threshold for this classification was
defined on the basis of the highest scores obtained in this study
and prioritizing epitopes with �95% conservation because

strains with a similarity of >95% were previously able to pro-
duce neutralizing antibodies for infections by different strains

[78]. Among the epitopes that are able to bind HLA-I, E374−382

is the only one that meets all the predetermined requirements,

confirming the immunogenic potential of this epitope previ-
ously reported [40,44]. Thirteen HLA-II epitopes met all the

requirements, including four epitopes present in structural
proteins (pr36−50, C61−75, C103−117, E477−491) and 9 in
nonstructural proteins (NS2a90−104, NS2a174−188, NS2a179−193,

NS2a190−204, NS2a195−209, NS2a200−214, NS3175−189, NS4a82−96,
NS4a99−113). Among the epitopes present in structural pro-

teins, E477−491 has the highest antigenic score (1.7899). This
epitope is located in domain III of the E protein, which is the

main domain associated with the induction of neutralizing an-
tibodies [79,80]. Of the nine HLA-II epitopes present in the

nonstructural proteins, six (66.66%) were identified on NS2a
protein (Table 4). The NS2a protein is involved in viral RNA

replication, virus assembly and secretion in flaviviruses [81]. It
This is an open access artic
was also demonstrated that ZIKV NS2a protein disrupts

mammalian cortical neurogenesis by degrading adherens junc-
tion protein [82]. Therefore, epitopes predicted in this protein

appear as potential candidates for the development of new
vaccine formulations. Epitopes in NS2a have already been
identified [45,63]. However, here we identify new and exclusive

epitopes on the ZIKV NS2a protein (Table 4).
The 14 predicted T-cell epitopes identified in this study,

taken together, are of special interest as potential candidate
regions for inclusion in developing epitope-driven vaccines

against ZIKV or diagnostic tests for the disease. Therefore,
these epitopes have a biotechnologic relevance to the rational

design of vaccine and diagnostic tests for ZIKV. However, in the
next years, future in vitro and in vivo studies should be carried

out to best characterize the immunogenicity of these epitopes
and to establish the role of these epitopes as new vaccines or
diagnostic tests.
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