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A B S T R A C T

The pathogenesis of an emerging virus disease is a difficult task due to lack of scientific data about the emerging
virus during outbreak threats. Several biological aspects should be studied faster, such as virus replication and
dissemination, immune responses to this emerging virus on susceptible host and specially the virus pathogenesis.
Integrative in silico transcriptome analysis is a promising approach for understanding biological events in
complex diseases. In this study, we propose an in silico protocol for identifying key genes and pathways useful to
understand emerging virus disease pathogenesis. To validate our protocol, the emerging arbovirus Zika virus
(ZIKV) was chosen as a target micro-organism. First, an integrative transcriptome data from neural cells infected
with ZIKV was used to identify shared differentially expressed genes (DEGs). The DEGs were used to identify the
potential candidate genes and pathways in ZIKV pathogenesis through gene enrichment analysis and pro-
tein‑protein interaction network construction. Thirty DEGs (24 upregulated and 6 downregulated) were iden-
tified in all ZIKV-infected cells, primarily associated with endoplasmic reticulum stress and DNA replication
pathways. Some of these genes and pathways had biological functions linked to neurogenesis and/or apoptosis,
confirming the potential of this protocol to find key genes and pathways involved on disease pathogenesis.
Moreover, the proposed in silico protocol performed anintegrated analysis that is able to predict and identify
putative biomarkers from different transcriptome data. These biomarkers could be useful to understand virus
disease pathogenesis and also help the identification of candidate antiviral drugs.

1. Introduction

Outbreaks of emerging and/or re-emerging viral infections are
common threats to human health. The emerging viral pathogens are
defined as novel viruses that have been recently introduced in a po-
pulation. In the last years, several medical important infectious out-
breaks have occurred worldwide, including West Nile virus,
Chikungunya virus, Zika virus, SARS, MERS, influenza and nCov-2019
(Ellwanger and Chies, 2016; Olival et al., 2017). Nevertheless, the
knowledge and understanding of virus pathogenesis is a difficult task
due to the lack of scientific data about the emerging virus during out-
break threats. Several biological aspects should be studied faster, such
as virus replication and dissemination, immune responses to this
emerging virus on a susceptible host and especially virus pathogenesis.
A rapid and regular focus on basic research about virus pathogenesis is
imperative and could help researches to better understand the

pathogenesis of these viruses and also to develop therapeutics and
vaccines and to control the disease (Afrough et al., 2019).

Changes in gene expression is a hallmark of virus infection and the
identification of the altered Gene expression profiling is very important
to understand the virus pathogenesis and also to the development of
new antivirals drugs and vaccines for the emerging/re-emerging
viruses. Recent developments in high-throughput sequencing technol-
ogies result in an intense accumulation of omics data from cells, tissues
and patients infected with different viruses. Integrative in silico tran-
scriptome analysis (ITA) is a promising approach for understanding
biological events in complex diseases. ITA also contribute to under-
standings of disease pathogenesis and to find new drugs to treat the
disease. For example, ITA was used to found genes with significant
associations with Alzheimer’s disease (Jin et al., 2018), preeclampsia
(Moslehi et al., 2013), HIV (Liao et al., 2017), lung cancer (Cinegaglia
et al., 2016) and hepatocellular carcinoma (Hoshida et al., 2009).

https://doi.org/10.1016/j.virusres.2020.197986
Received 2 March 2020; Received in revised form 21 April 2020; Accepted 21 April 2020

⁎ Corresponding author at: Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro, 700 Centro, CEP:
37130-000, Alfenas, Minas Gerais, Brazil.

E-mail address: luiz.coelho@unifal-mg.edu.br (L.F. Leomil Coelho).

Virus Research 284 (2020) 197986

Available online 24 April 2020
0168-1702/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681702
https://www.elsevier.com/locate/virusres
https://doi.org/10.1016/j.virusres.2020.197986
https://doi.org/10.1016/j.virusres.2020.197986
mailto:luiz.coelho@unifal-mg.edu.br
https://doi.org/10.1016/j.virusres.2020.197986
http://crossmark.crossref.org/dialog/?doi=10.1016/j.virusres.2020.197986&domain=pdf


In this study, we propose an in silico protocol for identifying key
genes and pathways useful to understand emerging virus disease pa-
thogenesis. To validate our protocol, the emerging arbovirus Zika virus
(ZIKV) was chosen as a target micro-organism. ZIKV is an enveloped
virus with approximately 50 nm in diameter with a single-stranded
positive RNA genome. It belongs to the family Flaviviridae and genus
Flavivirus. ZIKV was first isolated in the Zika Forest, Uganda, in 1947
(Shi and Gao, 2017; Yun and Lee, 2017). The virus is transmitted to
humans by hematophagous mosquitoes, mainly those belonging to the
Aedes genus (Petersen et al., 2016). The virus circulation was reportedly
restricted in endemic areas of Africa and Asia for several decades. In-
dividuals infected by ZIKV in these areas exhibited a self-limited febrile
disease. ZIKV started to gain attention from international public health
communities in 2013 when an outbreak occurred in French Polynesia
(Musso et al., 2015). In Brazil, the high rate of ZIKV infection was es-
tablished as one of the leading causes of an increase in cases of new-
borns with microcephaly in the Brazilian Northeast. The severity of the
reported neurological deficiency in the ZIKV cases led the World Health
Organization (WHO) to propose measures to intensify ZIKV prevention.
They also suggested the surveillance and investigation of the correla-
tion between it and microcephaly in neonates and Guillain-Barré syn-
drome generally in adults (Larocca et al., 2016; Laura et al., 2018).

Our proposed integrative transcriptome analysis protocol using data
from neural cells infected with ZIKV was able to identify shared dif-
ferentially expressed genes (DEGs). The DEGs were used to identify the
potential candidate genes and pathways in ZIKV pathogenesis through
gene enrichment analysis and protein‑protein interaction network
construction. Some of the genes, pathways and biological functions
were linked to neurogenesis and/or apoptosis, confirming the potential
of this protocol to find key genes and pathways involved in disease
pathogenesis. Moreover, the proposed in silico protocol performed an
integrated analysis that is able to predict and identify putative bio-
markers from different transcriptome data. These biomarkers could be
useful to understand virus disease pathogenesis and also help the
identification of candidate antiviral drugs.

2. Materials and methods

2.1. Transcriptome data of neural cells infected with Zika virus

Gene expression profiling data from ZIKV-infected human neural
cells were retrieved from RNA‐sequencing data from the Gene
Expression Omnibus platform (https://www.ncbi.nlm.nih.gov/gds). The
platform was extensively searched for datasets of any neural-origin cell
type that was infected with ZIKV. Information about the number of
samples used in each experimental condition, cell type, ZIKV strain and
time of infection were collected in an Excel spreadsheet. The number of
each dataset was recorded, and the raw sequence data were accessed
using the online Galaxy platform (https://usegalaxy.org/). After the
sequencing data was uploaded on the Galaxy platform, the "Tuxedo
suite" protocol was applied to identify differentially expressed genes
among uninfected and infected cells (Amrit and Ghazi, 2017). This
protocol uses a set of tools to analyze the quality and variety of RNA-
sequencing data, including short-readout mapping, splicing junction
identification and differential expression detection of transcripts and
isoforms, as well as tools for data visualization and control metrics of
sequencing quality. After the protocol was completed, a list of all DEGs
from each study with log fold change greater than 1.5 and p value ≤
0.05 was collected in an Excel spreadsheet. Only datasets that were
performed with at least two replicates for each experimental sample
and that had a minimum of 100 DEGs were used for the subsequent
analysis. Therefore, once a successful Galaxy run is completed we used
the final DEG list identified from each study to perform an integrative
analysis. This integrative analysis aims find genes and pathways which
were coincident among all DEG lists and therefore more likely to be
involved in the etiology.

2.2. Network construction

All networks presented in this work were built using Gephi version
0.9.2 (Bastian and Heymann, 2009). The cells and genes were listed in a
comma-separated values (.csv) spreadsheet for each graph, and this file
was imported into the software. Another. csv spreadsheet with the
connections between the cells and genes was also imported to generate
the network graph. In all networks, the node diameter is directly pro-
portional to the edge degree. The layout was generated using algo-
rithms based on the force of attraction and repulsion of the nodes (Force
Atlas 2). The nodes were submitted to local rearrangement for better
visualization of the connections between nodes.

2.3. Pathway and Gene Ontology (GO) enrichment analyses of DEGs

The Enrichr platform (http://amp.pharm.mssm.edu/Enrichr/) was
used to study pathway enrichment analyses of DEGs (Kuleshov et al.,
2016). The Enrichr online tool for GO (http://www.geneontology.org/;
Harris et al., 2004) was used to determine the function of DEGs. Data
from cellular components, biological processes and molecular functions
were recorded from each set of genes. An adjusted p ≤ 0.05 was con-
sidered statistically significant for all analyses. The lists of significant
GO terms were submitted to the Reduce + Visualize Gene Ontology
tool (REVIGO; Supek et al., 2011) and GO terms were visualized in an
interactive graph tool. Results were exported into Cytoscape software to
create graph-based visualization of the identified terms for each GO
category.

2.4. Protein-protein interaction (PPI) network construction

The candidate DEGs were searched in the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database, version 11
(stringdb.org). A combined score > 0.4 was used as the criteria to es-
tablish the PPI network. The isolated nodes were deleted from the
network, and the final network was downloaded as a simple tabular text
file. This network file was imported into Cytoscape software (version
3.7.1) for visualization.

3. Results

3.1. Differential expressed genes on ZIKV infected cells

As illustrated in Fig. 1, a six-step immunoinformatic approach was
used to identify identifying key genes and pathways useful to under-
stand emerging virus disease pathogenesis. To validate our protocol, the
emerging arbovirus ZIKV was chosen as a target micro-organism. An
extensive search using public databases and indexed publications was
performed to find transcriptomic studies from ZIKV-infected neural
cells. The search resulted in the selection of seven studies with tran-
scriptome data from different human neural cell lines or cerebral or-
ganoids (CO) infected at different multiplicity of infection (MOI) and
different times of infection. Experimental parameters, including ZIKV
strains, MOI, number of replicates and next-generation sequencing
(NGS) platform, used in each study are described in Table 1. The pre-
dominant cell type used for ZIKV infection was human cortical neural
progenitors (HCNP). However, transcriptome data from other ZIKV-
infected cells were also identified including microglia (MCG), glio-
blastoma stem cells (GSC), human neural crest cells (HNCC), human
peripheral neurons (PN) and CO. Different ZIKV strains (MR766, Mex-1,
PRVABC59 and Dakar 41,519) and a prolonged time of infection
(69.8 ± 29.96 h) were used by these studies.

To analyze changes in cellular gene expression after ZIKV infection,
only datasets that had at least duplicates of the experimental conditions
were used. Therefore, the dataset from ZIKV-infected microglia (Tiwari
et al., 2017) was excluded from the subsequent analysis. The Tuxedo
suite protocol was performed using the transcriptome, and the
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statistically significant DEGs were recorded. Applying the Tuxedo
protocol on datasets generated two sets of results. The first one com-
prised the results from HCNP and GSC datasets there was a high number
of DEGs in these cells after ZIKV infection. The second group was re-
lated to HNCC, PN and CO datasets, and it was characterized by a low
number of DEGs after ZIKV infection (Supplementary Table 1).

To construct a final list with the DEGs in HCNP after ZIKV infection,
the lists of downregulated and upregulated genes obtained in each
dataset (GSE78711, GSE80434 and GSE93385) were compared to use
only the genes that were considered differentially expressed in at least
two studies. For ZIKV-infected CO, only the dataset derived from 3-day
infection was used, because the dataset from 5-day infected CO had a
low number of DEGs (≤ 100). The final list with the identified DEGs (n
= 11,049) was used to build a bipartite network graph to better re-
present the effect of ZIKV infection on each cell type (Table 2). The

network graph for upregulated genes was composed of 5311 nodes,
with 5306 genes and 5 cells all connected by 6424 edges with the same
weight (w) = [1]. A network graph for downregulated genes was
composed of 3688 nodes, with 3683 genes and 5 cells all connected by
4611 edges with the same weight (w) = [1]. The network of upregu-
lated and downregulated genes showed a very similar pattern (Fig. 2A).
Network analysis revealed a marked change in GSC and HCNP gene
expression once these cells exhibited a high number of DEGs. There
were also changes in HNCC, PN and CO gene expression, but the
number of DEGs in these cells after ZIKV infection was relatively low.
Furthermore, the network analysis revealed a high number of DEGs
shared by GSC and HCNPC, but a low number of common DEGs among
all cells. Data analysis also demonstrated that the majority of upregu-
lated DEGs were expressed in one cell type (4338/ 81.71 %). Only 851
genes (16.02 %) were upregulated in two cell types, 94 genes (1.77 %)

Fig. 1. Schematic representation of entire in silico approach for identification of key genes and pathways useful to understand emerging virus disease pathogenesis.
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in three, 23 genes (0.43 %) in four and 3 genes (0.05 %) in all cell types.
Regarding downregulated DEGs, 3207 genes (82.59 %) were expressed
in only one cell type, 630 genes (16.22 %) in two, 40 genes (1.03 %) in
three and 6 genes (0.15 %) in four (Fig. 2B).

3.2. Protein-Protein interaction network using the DEGs shared by all cells
types after ZIKV infection

The results showed that the differential effect of ZIKV on cell
transcriptome could be related to the differentiation status of the cell.
Whereas the CO is composed of several cell types, using DEGs from this
type of tissue can induce an error in the integrative analysis of the
transcriptome of ZIKV-infected cells. Therefore, a new analysis was
performed using only the DEGs identified in HCNP, GSC, HNCC and PN
cells after ZIKV infection. Using this approach, we identified DEGs ex-
pressed in all cells (Fig. 3A; Table 3; Supplementary Table 2). The PPI
network was constructed using the DEGs shared by all cells. The PPI
network of upregulated DEGs was composed of 14 nodes and 28 edges,
and the PPI network of downregulated genes was composed of 4 nodes
and 6 edges. DEGs that encode proteins without any interaction were
excluded from the PPI networks (upregulated: CLK1, EIF1B, GOT1,
MXD1, SEC11C, SEC24D, SLC25A25, STMN4, TSPYL2 and TUFT1;
downregulated: PRTG and IGFBPL1). To investigate the expression
level of the target genes of ZIKV infected host cells, the RNA‐seq tran-
scriptomic expression data sets were analyzed and the fold change va-
lues were calculated comparing the mock and ZIKV treated cells. The
DEGs shared by all cells were highly differentially modulated compared
with the control condition (Fig. 3B).

3.3. Pathway and Gene Ontology enrichment analysis using the DEGs
shared by all cells types after ZIKV infection

Pathway enrichment analysis using the upregulated DEGs indicated
that they were involved in protein processing in the endoplasmic re-
ticulum (ER), and downregulated DEGs were involved in DNA re-
plication and cell cycle (Fig. 4A). Using the upregulated DEGs shared by
all cells, it was possible to identify several biological processes related
to the response to ER stress (GO:1905898, GO:1902235, GO:0034976,
GO:1902043, GO:0036498, GO:1900102 and GO:0036499; Fig. 4B).
There were also biological processes related to type I interferon sig-
naling pathway (GO:0060337 and GO:0071357) and positive regula-
tion of transcription from RNA polymerase II promoter (GO:0045944).
Molecular functions related to upregulated DEGs were core promoter
binding (GO:0000987, GO:0000978, GO:0001046, GO:0001047 and
GO:1990837) and regulation of transcription (GO:0044212,
GO:0000976 and GO:0000982). For downregulated DEGs, DNA re-
plication (GO:0006260) and mitotic cell cycle phase transition were the
identified biological process (GO:0000082, GO:0044843,
GO:0044772). For downregulated DEGs, the identified molecular
functions were related to DNA helicase activity (GO:0003678 and
GO:0004003). The upregulated DEG list did not produce any significant
cellular component (p ≥ 0.05). However, the downregulated DEG list
indicated chromosome telomeric region (GO:0000781), nuclear chro-
mosome-telomeric region (GO:0000784) and nuclear chromosome part
(GO:0044454) as cellular components related to these genes (Fig. 4B).Ta
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Table 2
Number of Differentially expressed genes used to construct interaction net-
works among ZIKV infected cells.

Cell type Up Dow Total

Human cortical neural progenitors 3586 1821 5407
Glioblastoma stem cells 2487 2537 5024
Human neural crest cells 188 137 325
Peripheral neurons 99 44 143
Cerebral organoids 76 74 150
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3.4. Search for published studies on Pubmed

To verify if the identified candidate genes and pathways had a
correlation with ZIKV pathogenesis, a bibliographic survey was con-
ducted in the PubMed (https://www.ncbi.nlm.nih.gov/pubmed). The
search strategy for original articles was composed of two components:
a) the gene, pathway or molecular function name and b) Zika virus. To
identify relevant indexed studies the search filter was structured by
combining the descriptors selected by boolean operators AND and NOR,
as well as the Title / Abstract [TIAB] algorithm. Reviews are excluded
from this analysis. Among the upregulated DEGs, it was identified 26
published studies that investigated the correlation of 14 upregulated
DEGs with ZIKV pathogenesis (Supplementary Table 3). ATF3 and
STAT1 genes exhibit the highest number of hits. For downregulated
DEGs, it was identified 8 published studies, being the CENPF the most
frequent gene (Fig. 5A). Regarding the pathways and biological pro-
cesses, all of them had at least one published study showing the mod-
ulation of these pathways or biological processes after ZIKV infection
(Fig. 5B). In a special way, 7 of 15 identified published studies showed a
correlation of the inhibition of the cell cycle pathway with ZIKV pa-
thogenesis. The ER stress has the highest number of hits among the
significant biological process related to DEGs.

4. Discussion

Outbreaks of emerging and/or re-emerging viral infections are
common threats to human health. When a new virus was discovery and
associated with human disease, it is necessary to understand virus

pathogenesis as soon as possible to develop countermeasures to the
disease such as vaccines and antiviral drugs (Afrough et al., 2019). The
omics technologies, especially the transcriptome studies could generate
thousands of information about the gene regulation on cells after virus
infection and therefore, it can help researches to gain insights about the
pathogen-host interaction (Berkhout and Coombs, 2013; Jean Beltran
et al., 2017). In this way, we propose a novel and friendly in silico in-
tegrative protocol for identifying key genes and pathways useful to
understand emerging virus disease pathogenesis. The main advantage
of this protocol is the use of galaxy platform to identify DEGs from
different transcriptome studies. Galaxy is a web open-source, web-
based platform for intensive biomedical research. Galaxy is used by
several researches, because this platform has thousands of different
tools for many different scientific fields. It can allow the analysis of
large sequencing datasets by researchers without programming skills
(Afgan et al., 2018). In this way, our proposed in silico protocol could
permit the researcher DEGs from different datasets and also integrate
the data. Data integration is vital to connect all the different data
sources to exploit the value of insights because it reduces data com-
plexity and also increases the value of data through unified systems.
Once all the DEGs are available in a single place in real-time, researches
would be able to use this protocol to integrate different transcriptome
data and also perform the identification of candidate genes and path-
ways involved in virus pathogenesis.

To validate our protocol, the emerging arbovirus ZIKV was chosen
as a target micro-organism. Since ZIKV is considered to be a risk factor
for microcephaly development in humans, several studies attempted to
understand the effect of ZIKV infection on different cell types. It is

Fig. 2. The network of up- and downregulated
genes after ZIKV infection of different cells
types. (A) The bipartite network graph shows a
spatially connected network among differen-
tially expressed genes (DEGs) and cells types
after ZIKV infection. Each node represents a
gene or cell type. The larger nodes represent
cell types and the connected smaller nodes
represent DEG. The layout was generated using
a force-based algorithm followed by manual
rearrangement to better visualize the connec-
tions. A total of 11,049 DEGs (6436 upregu-
lated and 4613 downregulated) and five cell
types are represented. (B) Number of DEGs
expressed in ZIKV-infected cells.
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crucial to characterize the gene expression profile in ZIKV-infected
cells, including neural-origin cells. Therefore, some studies published
the transcriptome of ZIKV-infected cells to identify genes that could be
involved in the development of neurological disorders induced by ZIKV.
A search of the literature identified some transcriptome studies from
ZIKV-infected neural cells, particularly neural progenitor cells
(Table 1). This finding may be associated with the damage that ZIKV
infection induces in this cell type during cell differentiation and in the
development of the cerebral compartment.

Many studies presented evidence of disrupted brain development
after infection of neural stem cells and neuroprogenitors by ZIKV in-
fectious particles (Russso and Beltrão-Braga, 2017). However, other
studies also showed the effect of ZIKV infection on GSC, HNCC, PN and
CO transcriptomes (Table 1). In these studies, ZIKV can infect the target

cells, but the outcomes are different. Data from many studies showed
more severe cell death and higher viral load in undifferentiated cells.
ZIKV infection and apoptosis rates are significantly higher in GSC
compared to proliferating tumor or differentiated cells (Zhu et al.,
2017). In the same context, ZIKV infection and cell death occur pre-
ferentially in neural progenitors present in CO (Watanabe et al., 2017).
Zhang et al. (2016) reported higher viral load and cell death in ZIKV-
infected HCNP. Regarding the effect of ZIKV infection on differentiated
cells, the virus replicates approximately 10-fold more in HNCC com-
pared to PN. There is also a significantly higher rate of apoptosis in
HNCC compared to PN (Oh et al., 2018).

Applying the Tuxedo protocol on the identified datasets allowed the
identification of DEGs in these cells after ZIKV infection (Table 2).
However, the integrative analysis of the transcriptomes showed a dif-
ferential effect on gene expression depending on the infected cell type.
HCNP and GSC showed more DEGs when compared to other cells
(Fig. 2A). Additionally, as HCNP and GSC shared many DEGs, data
suggest a similar effect of ZIKV infection on the transcriptome of these
cells. The data presented by Kaid et al. (2018) showed novel in vitro and
in vivo evidence about the use of a Brazilian ZIKV strain as an oncolytic
therapy to treat aggressive human embryonal tumors of the central
nervous system. Therefore, the most prominent oncolytic effects of

Fig. 3. Integrative transcriptome analysis of ZIKV-infected neural cells. (A) The Venn diagram shows the degree of overlap of the upregulated and downregulated
genes in ZIKV-infected cells. The Venn diagrams were constructed using the DEGs identified in each cell type using the Calculate and draw custom Venn diagrams
tool available at http://bioinformatics.psb.ugent.be/webtools/Venn/. The protein-protein interaction (PPI) networks for the common upregulated and down-
regulates genes were constructed using the STRING online database. DEG‑encoded proteins without any interaction were excluded from the network. The network
file was visualized with Cytoscape software. Abbreviations−HCNP: human cortical neural progenitors; GSC: glioblastoma stem cells, HNCC: human neural crest cells;
PN: human peripheral neurons. (B) Expression levels (FPKM) of DEGs on ZIKV infected cells.

Table 3
Number of Differentially expressed genes indentified by integrative analysis.

Group Up Dow Total

All cells 24 6 30
Undifferentiated cells (HCNP and GSC) 856 584 1440
Differentiated cells (HNCC and PN) 40 14 54
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Fig. 4. Enriched Kyoto Encyclopedia of Genes
and Genome (KEGG) pathways and Gene
Ontology (GO) terms identified in integrative
analysis of ZIKV-infected cells. A) DEG‑encoded
proteins identified from the protein-protein in-
teraction (PPI) network in each cell type after
ZIKV infection were used to identify significant
pathways (adjusted p < 0.05) using the Enrichr
platform (http://amp.pharm.mssm.edu/Enrichr/
). B) Visualization of the biological process and
molecular function GO annotations in ZIKV-in-
fected cells using REVIGO. Bubble color in-
dicates the p-value; bubble size indicates the
frequency of the GO term. Highly similar GO
terms are linked by edges in the graph, where
the line width indicates the degree of similarity.

Fig. 5. Search hits for terms related to DEGs, pathways, gene ontology terms and ZIKV identified in PubMed. (A) Search for upregulated and downregulated DEGs.
(B) Search for pathways and gene ontology terms. Legend: Prot.ER: protein processing in the endoplasmic reticulum, DNA rep.: DNA replication; ER stress: en-
doplasmic reticulum stress; IFN-I sig.: type I interferon signaling pathway; Mit. Cell.: mitotic cell cycle phase.
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ZIKV infection was observed in tumors generated by cell lines with
highly similar characteristics to early neural stem and neuroprogenitor
cells. The few identified DEGs shared by all cell types could be attrib-
uted to the differentiation status of these cells. HCNP and GSC are
undifferentiated, while HNCC and PN are differentiated cells. There-
fore, the number of shared DEGs between cells under the same differ-
entiation status should be greater than the DEG shared by un-
differentiated and differentiated cells (Table 3). There were few DEGs
shared by the four cell types. Consequently, few pathways, molecular
functions and biological processes were enriched using this set of genes
(24 upregulated and 6 downregulated genes).

The searches for published studies that investigate the expression of
DEGs on ZIKV infected cells also confirm the potential of this in silico
protocol to gain insights about virus pathogenesis. Eighteen of thirty
identified DEGs (60 %) had at least one published study (Fig. 5A). Some
of these DEGs have a direct correlation with antiviral response, neu-
rogenesis and apoptosis. STAT1 and ATF3 were the upregulated DEGs
with the highest number of hits. The increase of STAT1 expression on
infected cells is a common antiviral response on virus-infected cells.
Like other flaviviruses, ZIKV can antagonize the type I interferon
pathway through interference with STAT-1 signaling. This immune
evasion could be responsible to increase viral replication and apoptosis
on infected cells of neural or non-neural origin (Chen et al., 2018). The
ATF3 is a member of the activation transcription factor/cAMP-re-
sponsive element-binding protein family of transcription factors in the
mammalians. Changes in ATF3 expression was observed on ZIKV in-
fected cells (Moni and Lio, 2017; Zanini et al., 2018). This transcription
marker is activated on injured peripheral neurons and therefore it is
linked to neural cell survival (Lindå et al., 2011; Mahar and Cavall,
2018). CENPF is the downregulated DEG with the highest number of
hits. The CENPF encoded protein associates with the centromere-kine-
tochore complex and its nuclear localization suggests that it play a role
in chromosome segregation during mitosis (Varis et al., 2006). Several
studies had demonstrated the decrease of CENPF on ZIKV neural in-
fected cells, showing the correlation of CENPF downregulation with
microcephaly (Dang et al., 2019; Moni and Lio, 2017; Paul et al., 2018;
Zhang et al., 2016b).

Protein processing in the ER was the only significant pathway
identified using the upregulated DEGs. This data is in agreement with
several molecular functions related to the response to ER stress. Our
literature search was able to identify several published studies that
investigate the role of ER stress on ZIKV pathogenesis (Fig. 5B). The
ZIKV can induce the expression of ER stress sensors in mice and human
neural cells (Singh et al., 2018; Tan et al., 2018). Like other flaviviruses,
ZIKV depends on the ER for its translation, replication and packaging.
The biological events related to ZIKV replication in ER membranes in-
duce modifications that could trigger ER stress. Therefore, the unfolded
protein response should be activated to reduce stress on ZIKV-infected
neural cells. This event could be crucial to the microcephaly develop-
ment in newborns from ZIKV-infected mothers (Tan et al., 2018). En-
richment analysis using the downregulated DEGs identified cell cycle
and DNA replication as important affected pathways with deregulated
biological processes in all ZIKV-infected cells. Hammack et al. (2019),
showed that ZIKV can impair the cell cycle by inducing DNA double-
strand breaks in the host genome. This mechanism could be especially
important for HNCP, because the growth arrest on these cells could
impair brain development. Our data strengthen the idea that cell cycle
arrest and DNA replication could be an important mechanism in all
neural ZIKV-infected cells, independent of the differentiation status but
with a more detrimental effect on the undifferentiated cells. Among the
six downregulated DEGs identified by our analysis, four are related to
the regulation of early events of DNA replication (MCM2, MCM4 and
MCM6) on neocortex development. The proteins encoded by these
genes are part of the minichromosomal maintenance complex (MMC).
This complex consists of six subunits (MCM2 through MCM7) with ATP-
dependent helicase activity. The main function of this complex is to

attach to double-stranded DNA and induce the binding of multiple re-
plication factors to the replisome. Defective DNA replication is involved
in the pathophysiology of some cortical malformations like micro-
cephaly. Therefore, decreased MCM2, MCM4 and MCM6 expression
could disrupt the MMC in ZIKV-infected cell and thus affect the cell
cycle. Some works demonstrated a reduction of proliferation and
apoptosis in ZIKV-infected neural progenitor cells (Li et al., 2016; Tang
et al., 2017). These data in connection with the downregulation of
CENPF strengths the importance of maintaining the cell cycle to inhibit
the deleterious effects caused by the multiplication of ZIKV in neural
progenitor cells.

Using ZIKV as a model to validate our protocol we were able to
perform an integrative transcriptome analysis of different ZIKV-infected
cells. This analysis allowed us the identification of gene expression
profiles in each cell type. The results showed that each cell type ex-
hibited a particular response to ZIKV infection. Indeed, most identified
DEGs were present in only one cell type. The common DEGs are related
to two main critical pathways (DNA replication and ER stress) that
could be involved in defects in brain development in ZIKV-infected
newborns. Therefore, these DEGs can be subsequently used as potential
targets for the development of new drugs that allow effective treatment
of the disease. In conclusion, the proposed in silico protocol performed
an integrated analysis that is able to predict and identify putative
biomarkers from different transcriptome data. These biomarkers could
be useful to understand virus disease pathogenesis and also help the
identification of candidate antiviral drugs.
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