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forms of Chagas disease has been the subject of several studies, little is known about their relationship
with the development of different types of cancer. Therefore, knowledge regarding the molecular aspects
of infection in the host, as well as the influence of the immune response in the parasite and the host, can
help to understand the association between Chagas disease and tumor development. This review aims to
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1. Introduction

Despite scientific and technological advances over the decades,

clinically important parasitic diseases, including American or Afri-
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[1-3]. Studies addressing the control and elimination of parasitic
diseases, especially Chagas disease (CD) caused by Trypanosoma
cruzi, are mostly based on understanding the mechanisms under-
lying biological development and parasite—host interactions dur-
ing infection and parasite adaptation [4—10]. However, little is
known about the connection between trypanosomiasis and the
development of different neoplasms. Therefore, understanding the
molecular aspects of parasite—host interactions during parasite
infection, adaptation, and host immune responses during infection
is critical for investigating the pathogenesis of the disease and its
possible connection to neoplasm development.

Previous studies on the molecular basis of infectious and para-
sitic diseases have shown that carcinogenesis involves the pro-
duction of free radicals and nitric oxide, which can both breakdown
and modify nucleic acids, causing genomic instability and the
development of neoplastic processes [11]. In addition, the inflam-
matory response can damage DNA during the strand repair process,
thereby facilitating mutations, evasion of human host defense
mechanisms, and cell invasion and metastasis [11]. The correlation
between CD and neoplasms emerged from data that revealed that
T. cruzi infection usually occurs in childhood and promotes cellular
destruction and proliferation underlying the inflammation caused
by the protozoan, possibly favoring a neoplastic appearance [12].

Cancer is a global public health problem that can be induced by
various external agents, including viral, bacterial, and parasitic in-
fections. Cancer onset is associated with inducing agents such as
chemical and physical carcinogens, including heavy metals and
radiation. In addition, an increasing number of studies have shown
the participation of parasites as carcinogens in different tumor
types, including those that consider the relationship between CD
and different types of cancer (Fig. 1).

The general mechanisms of pathogen—associated carcinogen-
esis include persistent infection with consequent inflammation,
DNA damage, expression of oncogenes, and host immunosup-
pression [13]. The acquisition of different characteristics by
neoplastic cells favors tumor growth. Cancer hallmarks can be
affected by different parasites, leading to modifications in the im-
mune response [14,15]. Modulating the immune response, pro-
moting tumor inflammation and resistance to cell death, and
inducing angiogenesis are tumor processes that can be influenced
by parasitic infections [15]. Thus, further studies are needed to
better establish how these markers are altered in T. cruzi infection
and to protect against the disease. In addition to the hallmarks
mentioned before, epigenetic alterations, such as DNA/histone
methylation or acetylation changes, were also focused on cancer
and the relationship with other pathogen infections. While this
relationship was described in Leishmania donovani [16], Schisto-
soma hematobium, and Clonorchis sinensis infection [17,18], there is
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Fig.1. Interest in cancer and parasites (red) and cancer and Trypanosoma cruzi (blue) in
the scientific community in recent decades. The y-axis represents the number of
publications, and the x-axis represents time. The data were obtained by searching
PubMed for ‘cancer AND parasites' and ‘cancer AND Trypanosoma cruzi’. Data for 2022
were not used in the graph.
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no study that suggests that epigenetic changes in T. cruzi infection
can promote carcinogenesis.

CD is a chronic zoonotic disease known worldwide; however, it
is still considered a neglected tropical disease. CD, caused by the
protozoan Trypanosoma cruzi, affects approximately 6—7 million
people worldwide [19]. The disease is transmitted mainly during
blood repass by triatomine (barber) insects infected with trypo-
mastigotes [20]. After infection, approximately 70% of patients are
asymptomatic or present with indeterminate forms of the disease,
of which approximately 30% evolve to symptomatic forms pre-
senting with cardiac and/or digestive disorders, mainly represented
by megaorgans [21].

Previous reports have proposed an association between CD and
gastrointestinal cancer [12], esophageal carcinoma [22,23], colon
cancer [24], and gynecological neoplasms (Table 1). However, the
mechanisms by which T. cruzi favors the emergence and progres-
sion of different types of cancers are still unclear. Tong et al. (2017)
suggested that the complex mechanisms of T. cruzi-dependent
carcinogenesis are related to host genetic factors and the intrinsic
parasite—host relationship, which results in a chronic inflammatory
process in specific tissues (Fig. 2) [25]. Thus, the CD—cancer rela-
tionship will be discussed in the following sections, and the main
carcinogenic mechanisms possibly associated with tumor onset
and progression, along with the mechanisms associated with
T. cruzi-dependent tumor protection, will be presented.

2. T. cruzi and gastrointestinal tract cancers: a role for TP53
and PI3KCA in tumor progression

Chronic gastrointestinal manifestations of CD have been
described in different organs, including the salivary glands,
esophagus, stomach, small intestine, colon, and gall bladder [26].
Chagas-associated megaesophagus is one of the leading late com-
plications of CD and increases the risk of esophageal carcinoma by
up to 33 times compared with the normal population [27,28].
Esophageal cancer is the seventh most frequent neoplasm in the
world and the sixth leading cause of death in 2020 [29]. A recent
study by Martins et al. (2019) showed that approximately 4—10% of
patients with CD-induced megaesophagus developed esophageal
carcinoma. In this study, the main risk factor for cancer develop-
ment was achalasia. Achalasia, a disorder of esophageal motility, is
mainly characterized by peristalsis of the esophageal body and
failure to relax the lower esophageal sphincter, which favors the
onset of megaesophagus and progressive dysphagia in patients
with Chagas disease [30]. In addition, food stasis and prolonged
mucosal contact with dietary carcinogens could lead to chronic
esophagitis, consequently favoring the development of esophageal
neoplasia [23], in addition to other risk factors, such as destruction
of intramural myenteric neurons by the parasite, hyperkeratosis,
and leukoplakia [31].

The molecular mechanisms underlying the development of
esophageal carcinoma in patients with Chagas-associated mega-
esophagus have rarely been explored. A pioneering study by Lac-
erda et al. (2017) demonstrated that 40.6% of patients with Chagas-
associated megaesophagus and esophageal carcinoma had muta-
tions in TP53, suggesting a central role for this molecule in regu-
lating this neoplasm in patients with Chagas disease [32]. The
results showed mutations in codons 151 and 275 of TP53 [32].
Mutations in codon 151 promote gain-of-function, leading to
resistance to cell death by anoikis and tumor progression [33], and
mutations in codon 275 are reported to be somatically deleterious
and inactivate p53 [34]. The group also demonstrated the presence
of microsatellite instability in patients with esophageal carcinoma
and Chagas-associated megaesophagus [35]. The p53 signaling
pathway is described as a tumor suppressor activated by a range of
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Table 1
Association between Trypanosoma cruzi and different tumor types.
Cancer type Chagas disease  Chagas disease form Chagas disease total cases number  Cancer cases Reference
phase evaluated number
Esophageal cancer Chronic Megaesophagus 107 5 Rocha et al., 1983 [95]
Esophageal cancer Chronic Megaesophagus 90 7 Camara-Lopes, 1961
[28]
Ulcerative gastric Chronic Megacolon 1 1 Carneiro et al., 2011
adenocarcinoma [96]
Acute lymphoblastic Acute - 2 2 Rivero et al., 1974 [58]
leukemia
Gynecologic neoplasias Chronic Chagas cardiopathy/Megaesophagus/ 284 30 Dominical et al., 2010
Megacolon [56]
Colorectal cancer Chronic Megacolon 894 0 Garcia et al., 2003 [46]
Colorectal cancer Chronic Megacolon 120 0 Rocha et al., 1981 [97]
Colorectal cancer Chronic Megacolon 327 1 Meneses et al., 1989
[98]
Colorectal cancer Chronic Megaesophagus 140 13 Brandalise et al., 1985
[99]
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Fig. 2. Carcinogenic-dependent mechanisms of the CD-cancer relationship. (1) The molecular mechanisms of carcinogenesis in esophageal neoplasms associated with T. cruzi
infection include genetic mutations in tumor suppressor genes, such as TP53 and PI3KCA, which favor resistance to cell death and tumor progression. In contrast, T. cruzi-dependent
myenteric neuronal ablation inhibits tumor progression in individuals with Chagas-associated megacolon. (2) The relationship between gynecologic neoplasms and T. cruzi needs
further elucidation. (3) Neoplasms of the hemolymphopoietic system are related to cases of CD reactivation dependent on immune imbalance arising from the neoplasm. Created

with BioRender.com.

stress signals and is related to the transcriptional activity of genes
associated with different cellular processes [36]. Mutations in p53
are common in different human cancers, with a large majority of
the missense mutations producing mutant p53 with added amino
acids and loss-of-suppressor-function (mu7TP53). In addition,
mutant p53 proteins can acquire new oncogenic functions through
gain-of-function, favoring tumor progression [37].

Mutations in PI3KCA have also been reported in individuals with
esophageal carcinoma and Chagas-associated megaesophagus [38].
Approximately 22% of the patients analyzed had mutations in
different exons of PI3KCA, suggesting its participation in esophageal
carcinogenesis in patients with Chagas-associated megaesophagus
[38]. PI3KCA encodes phosphatidylinositol 3-kinase (PI3K), which
participates in various cellular processes, such as cell growth and
proliferation, apoptosis, motility, and cell survival. Moreover, it is
involved in the development of different types of cancers [39,40]. In
esophageal cancer, this pathway is associated with increased
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survival of esophageal carcinoma cells in vitro and the induction of
metastasis in vivo [41—43].

Chagas-associated megacolons are another common manifes-
tation of CD. T cruzi infection induces colorectal myenteric
neuronal destruction and consequent megacolon formation [44].
Reports indicate a negative association between Chagas-associated
megacolon and colon cancer [24,45]. Contrary to what has been
observed in esophageal carcinoma, patients with megacolon do not
have a higher incidence of colon cancer. Garcia et al. (2003)
observed in a retrospective study that among 894 cases of mega-
colon, no cases of preneoplastic lesions and/or colon cancer were
observed. These findings contradict essential findings regarding the
risk factors for colon cancer because patients with Chagas-
associated megacolon have chronic constipation, hyperplasia,
mucosal ulcers, and inflammation [46]. In addition, previous
studies from the same group showed that mice infected with
T. cruzi developed fewer colon tumors than the control groups [47].
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Neurons and glial cells modulate not only peristalsis and me-
chanical stimulation of the intestines but also participate in
epithelial proliferation and subepithelial angiogenesis and may
participate in cancer proliferation and facilitate tumor invasion
[48]. Indeed, experimental myenteric neuronal ablation has been
shown to protect against colon cancer development, with
decreased expression of neoplastic markers, such as B-catenin
[49,50]. Kannen et al. (2015) observed that myenteric neurons are
key elements in the initiation of colon carcinogenesis from its early
stages in humans and mice. They found intense myenteric neuronal
denervation in patients with Chagas-associated megacolon and
infected mice and fewer preneoplastic colon lesions. In addition,
analysis of argyrophilic nucleolar organizer regions in the crypt
fundus revealed a reduced risk of colon cancer in patients with
Chagas-associated megacolon [51]. Enteric glial cells are essential
for maintaining intestinal homeostasis and function, and their loss
promotes the collapse of the intestinal epithelium [52]. In the tu-
mor microenvironment, they can release tumorigenic factors, such
as prostaglandin E2 (PGE2), which favors colon carcinogenesis.
Indeed, glial cells and neurons can be activated by tumor cells and
contribute to tumorigenesis through the activation of downstream
proliferative pathways, such as the MAPK and PI3K/Akt pathways
[53,54].

Although the complex mechanisms of this neuronal depen-
dence and tumor proliferation in CD have not been fully elucidated,
it is suggested that a specialized microenvironment containing
neurotrophins, neurotransmitters, adhesion molecules, matrix
metalloproteinases, and other neuron- and glial cell-dependent
mediators is altered during CD pathogenesis [5], which may pro-
tect against the onset of colon cancer.

3. T. cruzi and gynecological cancer

Gynecological cancers pose a notable threat to women's health
worldwide, with a high incidence of cervical, ovarian, and endo-
metrial cancers [55]. The correlation with T. cruzi has been studied
since women with CD present gynecological neoplasms, such as
cervical cancer. A study by Domingos et al. (2010) revealed no
correlation between the occurrence of CD and gynecological neo-
plasms (uterine leiomyoma and cervical carcinoma), concluding
that CD was neither a risk nor a protective factor for the develop-
ment of gynecological neoplasms in the 671 cases analyzed [56]. In
contrast, in a study on CD frequency among women with uterine
leiomyoma, Murta et al. (2002) observed a positive association
between CD and leiomyoma, wherein 27.1% of women were sero-
logically positive for CD and were diagnosed with leiomyoma [57].

The scarcity of studies makes it evident that the relationship
between CD and gynecological cancers needs further elucidation,
with research focused on identifying possible molecular mecha-
nisms that prove the parasite's participation in the emergence and
development of these types of neoplasms or even as a protective
agent.

4. T. cruzi and cancers of the hemolymphopoietic system

Unlike the other tumor types described here and their close
relationship with CD target organ carcinogenesis, hemolympho-
poietic cancers seem to favor CD reactivation. Thus, CD reactivation
has been observed in patients with hematologic malignancies
(acute lymphoblastic leukemia [58], acute lymphocytic leukemia
[59], Hodgkin's lymphoma [60], non-Hodgkin's lymphoma [61],
and follicular lymphoma [62]) undergoing antineoplastic or non-
antineoplastic chemotherapy/corticotherapy. In addition to the
tumor characteristics and the impact on the organism, antitumor
treatments can also induce immunosuppression by affecting the
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balance of the cellular immune response and, consequently,
delinking mechanisms that control T. cruzi infection [58,63]. This
relationship between CD and hematologic cancer chemotherapy
has been demonstrated in patients with chronic Chagas-associated
myocarditis or even undiagnosed CD who underwent chemo-
therapy for Hodgkin's [60] and non-Hodgkin's [61,64] lymphoma.
In these cases, amastigote nests were observed in the heart, larynx,
esophagus, and gastric mucosa after treatment for neoplasms,
characteristic of the acute phase of CD [61]. Although the parasite
was found in these studies, none of them evaluated its immune
response. Thus, it is necessary to extend such evaluations to
strengthen the relationship between hematologic malignancies
and CD reactivation.

5. T. cruzi against carcinogenesis: main characters involved
5.1. The infection and the role of epimastigote extract

The molecular mechanisms underlying T. cruzi-dependent
carcinogenic induction have been poorly explored in the literature.
However, protective and anticancer properties of the parasite have
been reported (Fig. 3). In the 1940s, researchers from the former
Soviet Union postulated the antitumor activity of T. cruzi based on
the toxic effects of infection and parasite extracts on different tu-
mors in humans and experimental models [65]. They described the
components of the extract as toxins, which reduced pain, tumor
growth, bleeding, and local inflammation caused by the tumor [65].
Years later, a French laboratory marketed a formulation known as
Cruzin Antibiotic, but soon after, it was discontinued owing to a lack
of knowledge of its mechanisms of action [66,67]. A later study
showed a preference for parasite infection by tumor cells over
normal host cells, suggesting antagonism between T. cruzi infection
and tumor progression [68]. In this way, the relationship between
T. cruzi and cancer has begun to be established, primarily focusing
on the antitumor potential of the protozoan components.

Indeed, epimastigote lysate extracts have been reported to
exhibit antitumor potential [69,70]. In an experimental model
infected with T. cruzi and subjected to colon cancer induction by
chemical carcinogens, such as 1,2-dimethylhydrazine (DMH),
chronic infection was demonstrated to increase resistance against
tumor growth [47]. In addition to the infection itself, an extract of
lysed epimastigotes was able to inhibit tumor growth in a mouse
model of colon and breast cancer [71]. This extract was shown to
induce innate immune cells in the spleen of the animals, with
increased macrophages, dendritic cells, and NADPH oxidase activ-
ity, regardless of the cancer subtype. Immunization also stimulated
components of acquired immunity by inducing the proliferation
rate of splenocytes and activating CD4" and CD8™ T cells when the
spleens of the animals were isolated and stimulated with parasite
antigens in vitro. Furthermore, splenocytes from mice immunized
with the extract demonstrated greater in vitro cytotoxicity toward
NMU (adenocarcinoma) cells than those not immunized. Moreover,
immunization led to the production of T. cruzi-specific antibodies
that induce cytotoxicity in tumor cells in vitro and recognize breast
and colon cancer cells in experimental models and the respective
tumor types in humans [71].

5.2. Influence of calreticulin

In addition to the role of infection and the extract of epi-
mastigotes from different strains of T. cruzi, recent studies have
demonstrated the participation of the protozoan calreticulin in
tumor inhibition. Calreticulin (TcCRT) is a chaperone present in the
endoplasmic reticulum of the parasite and, when externalized, in-
teracts with the C1 component of the complement, causing its
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proteins also induced apoptosis. Recombinant J18 promoted apoptosis by increasing caspase-3 in a melanoma cell line in vitro and in vivo. The aggressive phenotype of neoplastic
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inhibition and increasing parasite infectivity [72]. response since the parasite can translocate tumor cell-bound

An in vitro breast adenocarcinoma cell line (TA3) treated with TcCRT. This mechanism can activate antigen-presenting cells,
TcCRT showed enhanced phagocytosis and immunogenicity. The with subsequent activation of cytotoxic CD8" T lymphocytes and
antitumor effects were mediated by the inhibition of T-cell induction of cell death [78].
apoptosis via galectin-9 and PD-L1, activation of natural killer (NK)
cells, and inhibition of regulatory cytokines in the tumor micro-
environment, such as those produced by regulatory T lymphocytes
[73].

In vivo antiangiogenic effects were observed, with interference
in the morphogenesis, migration, and proliferation of endothelial
cells [74—76]. When inoculated into the peritumoral area, TcCRT
reduced tumor growth in mouse mammary adenocarcinoma [74]
and a murine melanoma model [77]. From a molecular point of
view, TcCRT may promote an enhanced antitumor immune

5.3. The importance of recombinant T. cruzi proteins

The induction of apoptosis by recombinant proteins from the
protozoan demonstrated the antitumor effects of T. cruzi-specific
compounds. The recombinant J18 protein based on gp82, a T. cruzi
surface molecule, induced apoptosis in a melanoma cell line (Tm5)
and reduced NF-kB translocation, culminating in reduced cell
growth [79]. The in vivo effects were similar, with decreased tumor
growth in J18-treated animals and increased levels of apoptotic
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markers, such as caspase-3 [79].

Cell invasion and metastasis activation are fundamental char-
acteristics for acquiring aggressive phenotypes by neoplastic cells
[14]. P21, a T. cruzi protein involved in parasite cell invasion and
host residence, has also been evaluated for its antitumor action. Its
recombinant form (rP21) has biological activity, including binding
to CXCR4 receptors in macrophages, production of chemokines,
such as CXCL12, and, consequently, chemotaxis of immune cells
[80,81]. Borges et al. (2020) demonstrated that rP21 binds to CXCR4
receptors on breast cancer cells and interferes with their migratory
and invasive phenotypes. Furthermore, rP21 also binds to CXCR4 on
endothelial cells, inhibits blood vessel formation, and promotes an
increase in the number of cells in the S phase of the cell cycle,
leading to their arrest in this phase [82]. The negative regulation of
CXCR4 caused by rP21 may inhibit metastasis since chemotaxis of
CXCL12, a chemokine associated with cell proliferation and inva-
sion, is inhibited [83,84].

The TcMSH2 protein may also represent a component partici-
pating in the T. cruzi-tumor protection relationship [25]. This pro-
tein is part of the group of molecules involved in the DNA repair
machinery, commonly called mismatch repair machineries (MMR).
Basically, this machinery acts to remove base substitutions and
mismatches in the DNA structure that are beyond the reach of DNA
polymerase, which consequently increases the quality/fidelity of
the replication of the genetic material [85]. Thus, Tc(MSH2 present
in the protozoan is an important ally against DNA damage, espe-
cially oxidative stress-induced damage [86,87]. In fact, oxidative
stress has a direct influence on tumor development, mainly
because it is related to DNA damage in normal cells [88]. Although
protocols for the recombinant expression of TcMSH2 already exist
[86,87], there are still no studies describing the importance of
TcMSH2 from T. cruzi in tumor protection, which makes this protein
an important target.

5.4. T cruzi as a vaccine vector

In addition to the anticancer properties described here, T. cruzi
has been used as a vaccine vector [89]. Currently, the discovery of
viable cancer vaccines aimed at inducing protective and long-
lasting immunity is one of the main challenges in scientific
research [90]. The main justification for using T. cruzi is its ability to
induce a complex immune response, primarily mediated by T cells,
a major requirement in cancer vaccines [91]. Junqueira et al. (2011)
used a recombinant nonpathogenic T. cruzi clone as a vaccine vector
for the delivery of an antigen member of the testicular cancer an-
tigen family (NY-ESO-1) to induce T-cell-mediated immunity.
T. cruzi-induced NY-ESO-1-specific immune responses both in vitro
and in vivo. There was an increase in the number of CD8™ T cells,
which was dependent on the IL-12 and MyD88 pathways, and a
reduction and delay in tumor development in experimental models
[89].

Subsequently, glycosyl inositol phospholipid (GIPL) adjuvants
and T. cruzi-derived CpG oligodeoxynucleotides (CpG ODNs) induce
an immune response through the activation of Toll-like 4 (TLR4)
and 9 receptors. In a melanoma model, increased CD4" and CD8™ T-
cell responses were observed, characterized by increased IFN-y
levels [92]. Furthermore, the use of attenuated T. cruzi expressing
NY-ESO-1 as a vaccine vector, associated with the blockade of
cytotoxic T lymphocyte antigen 4 (CTLA-4), increased the number
of CD8" T cells, promoted increased IFN-y production, and
increased lymphocyte migration into the tumor microenvironment
[93].

These results highlight the importance of T. cruzi as an efficient
tumor antigen delivery agent in the clinical vaccines under devel-
opment. Multiple molecules and mechanisms of the parasite are
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most likely involved in the tumor resistance mediated by T. cruzi
infection [94]. Identifying these target molecules, developing
intervention tools, and understanding the molecular aspects of the
host immune response could provide crucial insights into the
molecular basis of parasitic diseases and their relationship with the
development of new, more effective cancer therapies and vaccines.

6. Perspectives and future directions

In this review, we highlight the main carcinogenic mechanisms
of the protozoan Trypanosoma cruzi in different tumor types.
T. cruzi-dependent carcinogenesis is associated with the potential
to generate a chronic inflammatory environment, oxidative stress,
and tissue damage caused by the permanence of the parasite in
specific tissues. Thus, the molecular mechanisms underlying this
intrinsic relationship may be related to various mutations in tumor
suppressor genes and oncogenes. However, further studies are
needed to understand the precise relationship between these fac-
tors and tumor development. Since antitumor protective mecha-
nisms have also been described, identifying which parasite and
host factors contribute to this process is urgently needed.

However, there are still challenges in using parasites in the field
of cancer theranostics because of the complicated interactions be-
tween cancer cells and parasitic factors. First, the wide diversity of
T. cruzi strains with varying biological behaviors, particularly in
parasite-host interactions, exerts distinct impacts that may
contribute to carcinogenesis in a tumor-type-dependent manner.
Second, cancer cells secrete growth factors and molecules that in-
fluence parasite survival and function, in addition to the complexity
of the tumor microenvironment. Third, the variability of the anti-
tumor response depends on factors, such as the cancer subtype and
stage of transformation. Finally, a deeper understanding of the
potential antitumor activity of T. cruzi is essential to better under-
stand how the parasite or its molecules can be applied in antitumor
therapy as well as to elucidate the mechanisms by which the
parasite may favor tumor progression.
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