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Antibiotic-induced microbiome depletion alters renal glucose metabolism and
exacerbates renal injury after ischemia-reperfusion injury in mice
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Abstract

Recent studies have revealed the impact of antibiotic-induced microbiome depletion (AIMD) on host glucose homeostasis. The
kidney has a critical role in systemic glucose homeostasis; however, information regarding the association between AIMD and
renal glucose metabolism remains limited. Hence, we aimed to determine the effects of AIMD on renal glucose metabolism by
inducing gut microbiome depletion using an antibiotic cocktail (ABX) composed of ampicillin, vancomycin, and levofloxacin in
mice. The results showed that bacterial 16s rRNA expression, luminal concentrations of short-chain fatty acids and bile acids,
and plasma glucose levels were significantly lower in ABX-treated mice than in vehicle-treated mice. In addition, ABX treatment
significantly reduced renal glucose and pyruvate levels. mMRNA expression levels of glucose-6-phosphatase and phosphoenolpyr-
uvate carboxykinase in the renal cortex were significantly higher in ABX-treated mice than in vehicle-treated mice. We further
examined the impact of AIMD on the altered metabolic status in mice after ischemia-induced kidney injury. After exposure to is-
chemia for 60 min, renal pyruvate concentrations were significantly lower in ABX-treated mice than in vehicle-treated mice. ABX
treatment caused a more severe tubular injury after ischemia-reperfusion. Our findings confirm that AIMD is associated with
decreased pyruvate levels in the kidney, which may have been caused by the activation of renal gluconeogenesis. Thus, we
hypothesized that AIMD would increase the vulnerability of the kidney to ischemia-reperfusion injury.

NEW & NOTEWORTHY This study aimed to determine the impact of antibiotic-induced microbiome depletion (AIMD) on renal
glucose metabolism in mice. This is the first report confirming that AIMD is associated with decreased levels of pyruvate, a key
intermediate in glucose metabolism, which may have been caused by activation of renal gluconeogenesis. We hypothesized

that AIMD can increase the susceptibility of the kidney to ischemia-reperfusion injury.

gluconeogenesis; ischemia, lactate; metabolic remodeling; pyruvate

INTRODUCTION

Antibiotics are widely used for the prevention and treat-
ment of infectious diseases. Possessing bactericidal or bac-
teriostatic activity against both pathogenic and commensal
bacteria, antibiotics can directly affect the gut microbiome
composition (1, 2). It has been known that patients admitted
to intensive care units are often treated with multiple antibi-
otics and that they have altered gut microbiota (3, 4), sug-
gesting that antibiotic use could affect the diversity and
number of gut microbiota in patients (5, 6). Therefore,
understanding the effects of antibiotic-induced reduction of
gut microbiota on host physiology and organ homeostasis is
vital.

Since intestinal bacteria produce short-chain fatty acids
(SCFAs) and bile acids, a decrease in gut microbiome abun-
dance leads to a reduction in the luminal contents of SCFAs
and bile acids in the intestinal tract (7-9). Recent studies
have revealed an association between antibiotic-induced
microbiome depletion (AIMD) and changes in host glucose
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homeostasis (10, 11). Zarrinpar et al. (11) reported that AIMD
enhances anaerobic glycolysis in cecal epithelial cells of mice
and upregulates the expression of genes coding for key
enzymes involved in hepatic gluconeogenesis, specifically glu-
cose-6-phosphatase (G6pc) and pyruvate carboxylase (Pcx),
suggesting an association between AIMD and enhanced gluco-
neogenesis in the mouse liver.

The kidney has a distinctive role in glucose homeostasis
by modulating not only glucose utilization but also gluco-
neogenesis and glucose reabsorption from renal tubules (12).
This organ is responsible for up to 20% of endogenous glu-
cose production via gluconeogenesis (13) and has the
capacity for lactate uptake and pyruvate release, thereby
maintaining pyruvate and lactate levels in the blood (14).
However, despite the critical role of the kidney in systemic
glucose homeostasis, information regarding the effect of
AIMD on renal glucose metabolism remains limited.

Renal glucose metabolism is affected by multiple factors,
including nutritional status and renal and extrarenal dis-
eases (15-18). A previous study revealed the rapid changes in
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the renal contents of glucose and its metabolites (pyruvate
and lactate) after exposure to ischemia and glycerol-induced
kidney injury (19). Likewise, Smith et al. (20) reported
decreased renal pyruvate levels in mouse kidneys after lipo-
polysaccharide-induced acute kidney injury (AKI). Given the
impact of AKI on renal glucose metabolism, the effect of
AIMD on metabolic status in the Kidneys during ischemia
requires elucidation.

Hence, we aimed here to determine the impact of AIMD
on renal glucose metabolism in mice. To test this, we quanti-
fied renal glucose metabolites in mice treated with broad-
spectrum antibiotics and later subjected to renal ischemia.
Our findings may provide new insights regarding the effects
of AIMD on renal glucose metabolism.

MATERIALS AND METHODS

Chemicals and Reagents

Sterilized and analytical grade reagents and chemicals were
obtained as described below. PBS, ampicillin, vancomycin,
levofloxacin, ethyl Carnoy’s solution, 4% paraformaldehyde in
PBS, glucose, acetate, propionate, butyrate, ursodeoxycholate,
pyruvate, lactate, benzoate, 3-nitrophenylhydrazine, pyridine,
acetyl-CoA, acetonitrile, ultrapure water, formic acid, ammo-
nium acetate, K,COs, and 4',6-diamidino-2-phenylindole were
purchased from Wako Pure Chemical Industries (Osaka,
Japan). Cholate, deoxycholate, citrate, a-ketoglutarate, succi-
nate, fumarate, malate, ATP, HCIO,4, BSA, and Triton X-100
were purchased from Nacalai Tesque (Kyoto, Japan). N-(3-
dimethylaminopropyl)-N’-ethylcarbodiimide and optimal cut-
ting temperature (OCT) compound were obtained from Sigma-
Aldrich (St. Louis, MO) and Sakura Fine Technical (Tokyo,
Japan), respectively.

Animals

Consistent with most previous studies investigating the
effects of AIMD on systemic metabolism (9-11, 21-24), only
male mice were used in this study. Male BALB/c mice (8 wk
old) were obtained from SLC Animal Research Laboratories
(Shizuoka, Japan) and maintained in accordance with the
Guidelines for Animal Experiments of Kyoto University
(Kyoto, Japan). All protocols were approved by the Animal
Research Committee of the Graduate School of Medicine,
Kyoto University (Permit No. Medkyo 20122). Mice were
housed in a specific pathogen-free facility, kept in a tempera-
ture-controlled environment with a 12:12-h light-dark cycle,
and received a standard diet and water ad libitum. For com-
mensal depletion, mice were administered with an antibiotic
cocktail (ABX) via drinking water for 3, 7, 10, or 14 days. ABX
was composed of 1g/L ampicillin, 0.5g/L vancomycin, and
0.5g/L levofloxacin and was dissolved in sterilized water.
Control mice received vehicle (sterilized water) only.

At the end of each experiment, mice were euthanized
under isoflurane-induced anesthesia, and the plasma, colon,
and kidneys were collected. The luminal content of the colon
was removed by flushing with sterile PBS and gently squeez-
ing out the intestinal content into a collection tube. The
plasma, intestinal and colon luminal content, whole kidney,
and dissected kidney showing the cortex were rapidly frozen
in liquid nitrogen and stored at —80°C. For pathological
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evaluation, resected kidneys were fixed in ethyl Carnoy’s solu-
tion. To evaluate protein expression of kidney injury mole-
cule-1 (Kim-1), mice were perfused with 4% paraformaldehyde
in PBS, and the kidneys were dissected.

Quantification of Glucose and the Glucose Tolerance
Test

The glucose tolerance test was performed on fasted mice
(4h) by monitoring plasma glucose levels. Briefly, mice were
fasted for 4 h before an intraperitoneal injection with glucose
(1g/kg body wt). Glucose levels in the plasma and kidney
were measured using a colorimetric assay (LabAssay
Glucose, Wako Pure Chemical Industries) according to the
manufacturer’s protocol.

Renal Ischemia and Ischemia-Reperfusion

To evaluate the effect of renal ischemia on glucose metab-
olism, mice were subjected to ischemia-reperfusion (IR) after
14 days of treatment with ABX or vehicle (for the control).
Mice were anesthetized (induced by medetomidine, midazo-
lam, and butorphanol) and placed on a homeothermic table,
and body temperature levels were monitored and main-
tained at 37°C during surgical procedures. For unilateral re-
nal ischemia (60 min), mice were subjected to a midline
abdominal incision, and the left renal pedicle was clamped
with a nontraumatic clamp (Natsume Seisakusho, Osaka,
Japan) for 60 min, followed by resection of the clamped and
contralateral (control) kidneys. To induce IR injury, a back
incision was made to expose the left renal pedicle. The left
renal pedicle was clamped for 30 min, followed by 24h of
reperfusion. The back incision was closed with two layers of
sutures, and mice recovered from anesthesia. The Kidneys
were resected after the reperfusion period.

Assessment of Microbiome Depletion

Microbiome depletion was assessed based on the relative
expression levels of 16s rRNA in the colon luminal contents.
Total DNA was extracted from samples using the NucleoSpin
DNA Stool Mini Kit (Macherey-Nagel, Diiren, Germany)
according to the manufacturer’s protocols. Quantitative PCR
analysis was performed using Power SYBR Green PCR Master
Mix (Applied Biosystems, ThermoFisher Scientific, Waltham,
MA) and the StepOnePlus Real-Time PCR System (Applied
Biosystems, ThermoFisher Scientific) according to the manu-
facturer’s instructions. The following primers were used for
amplification: 16s rDNA forward primer 5-GGTGAATAC-
GTTCCCGG-3' and reverse primer 5'-TACGGCTACCTTGTT-
ACGACTT-3' (25). The relative quantity of 16s rDNA in the
same amount of total DNA was calculated using the AC;
method (where C, is the threshold cycle).

Quantification of SCFAs, Bile Acid, and Organic Acids

Acetate, propionate, butyrate, cholate, deoxycholate, urso-
deoxycholate, pyruvate, lactate, citrate, o-ketoglutarate,
succinate, fumarate, and malate were quantified as their
3-nitrophenylhydrazones using liquid chromatography-tan-
dem mass spectrometry (LC-MS/MS) following previously
published protocols (26-29). For organic acid extraction, the
kidneys were homogenized in nine volumes of 50% acetoni-
trile (9 uL/1mg tissue). A 50 uL standard solution (mixture of
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acetate, propionate, butyrate, pyruvate, lactate, citrate, a-ke-
toglutarate, succinate, fumarate, and malate or mixture of
cholate, deoxycholate, and ursodeoxycholate), intestinal con-
tents, plasma, or homogenized kidney was added to 250 uL of
100 uM benzoate (internal standard) in 100% acetonitrile and
centrifuged at room temperature for 10 min at 10,000 g. For
derivatization, 40 uL of the supernatant was mixed with 20 uL
of 200 mM 3-nitrophenylhydrazine in 50% aqueous acetoni-
trile and 20 pL of 120 mM N-(3-dimethylaminopropyl)-N'-eth-
ylcarbodiimide-6% pyridine solution in the same solvent. The
mixture was incubated at 40°C for 30 min and allowed to react.
After the reaction, the solution was diluted with 2 mL of 10%
aqueous acetonitrile. LC-MS/MS analysis was performed using
the LCMS-8040 system (Shimadzu, Kyoto, Japan) set to multi-
ple reaction monitoring mode in negative ion mode. Reversed-
phase chromatography was performed on a COSMOSIL 5 Cyg-
MS-II column (4.6 x 150 mm, 5um, Nacalai Tesque). The mo-
bile phase was composed of 0.1% formic acid in water (A) and
0.1% formic acid in acetonitrile (B). For analysis of SCFAs and
organic acid, the gradient elution was performed as follows
(flow rate at 0.35mL/min): initial elution at 15% B for 1.0 min,
followed by a linear increase to 55% B for 5.0 min, then 80% B
for 1.5min, with a hold at 80% B for 2.0min, and then
decreased linearly to 15% B for 1.5min. For analysis of bile
acid, the gradient elution was performed as follows (flow rate
at 0.45mL/min): initial elution at 30% B for 1.0 min, followed
by a linear increase to 80% B for 3.0 min, then 91.7% B for
7.0 min, and then decreased linearly to 30% B for 0.5 min. The
following ion transitions were monitored to detect each metab-
olite: acetate, from m/z 194.1 to 137.0; propionate, from m/z
207.9 to 137.0; butyrate, from m/z 222.1 to 137.0; cholate, from
m/z 542.2 to 137.0; deoxycholate, from m/z 526.2 to 152.0; urso-
deoxycholate, from m/z 526.1 to 137.1; pyruvate, from m/z 357.1
to 137.0; lactate, from m/z 224.1 to 137.0; citrate, from m/z
596.0 to 222.1; a-Ketoglutarate, from m/z 550.0 to 233.1; succi-
nate, from m/z 386.9 to 152.1; fumarate, from m/z 384.9 to
137.0; malate, from m/z 403.1 to 137.0; and benzoate, from m/z
255.9 to 137.0 (Where m/z is the mass-to-charge ratio).

ELISA of Plasma Glucagon-Like Peptide 1 and Insulin

Plasma glucagon-like peptide 1 (GLP-1) and insulin levels
were determined using GLP-1 ELISA (Wako Pure Chemical
Industries) and LBIS Mouse Insulin ELISA (Shibayagi,
Gunma, Japan) Kits, respectively, according to the manufac-
turer’s protocols.

Quantification of Acetyl-CoA and ATP

For the extraction of acetyl-CoA and ATP, the tissue was
homogenized with nine volumes of 0.3 M HCIO4 (9 uL/1 mg
tissue), incubated on ice for 10 min, and centrifuged at
10,000 ¢ for 10 min. The supernatant (400 pL) was neutral-
ized with 135uL of 0.5M K,CO3, and the precipitate was
removed by centrifugation (at 4°C for 10 min at 14,000 g).
The neutralized supernatants were subjected to LC-MS/MS
analysis and reversed-phase chromatography following
the methods described earlier. The mobile phase was com-
posed of 1mM ammonium acetate in water (A) and 1mM
ammonium acetate (B) in methanol. The gradient elution
was programmed as follows (flow rate at 0.2 mL/min): ini-
tial elution with 2% B in 2.0 min, followed by a linear
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increase to 25% B in 3.5min, then to 100% B in 0.5 min,
held at 100% B in 4.0 min, and then decreased linearly to
2% B in 1.0 min. The ion transition from m,/z 810.0 to 303.1
in positive ion mode was monitored to detect acetyl-CoA
(30). ATP levels were quantified using a CellTiter-Glo lucif-
erase/luciferin assay (Promega, Madison, WI) according to
the manufacturer’s instructions, and luminescence levels
were measured using a LB 940 luminometer (Berthold,
Bad Wildbad, Germany).

Quantitative RT-PCR

Total RNA was extracted from ~40 mg of mouse kidneys
using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and
then reverse transcribed using a High-Capacity cDNA Reverse
Transcription Kit (ThermoFisher Scientific). Quantitative RT-
PCR was performed using the methods described earlier.
Relative mRNA expression levels of target genes were calcu-
lated using the 2724t method, with Gapdh as the reference.
The following primer pairs were used for amplification (11, 20,
31-34): Gapdh, 5'-TGAACGGATTTGGCCGTATTGG-3’ and 5'-
TGCCGTGAGTGGAGTCATACTG-3'; glucose transporter 1
(Glut1), 5'-AGATGAAAGAAGAGGGTCGG-3' and 5-AGAAC-
ACAGCATTGATACCC-3'; glucose transporter 2 (Glut2), 5'-
TCCTCGTGGCGCTGATG-3' and 5'-CTGGTTGAATAGTAAA-
ATATCCCATTGAT-3'; Na ™ -glucose cotransporter 1 (Sglt1), 5'-
AAGATCCGGAAGAAGGCATC-3' and 5'-CAATCAGCACGA-
GGATGAAC-3’; Na ' -glucose cotransporter 2 (Sgit2), 5'-TAT-
TGGTGCAGCGATCAGG-3' and 5-CCCAGCTTTGATGTGAGT-
CAG-3'; G6pc, 5'-CAGTGGTCGGAGACTGGTTC-3’ and 5'-GT-
CCAGGACCCACCAATACG-3'; hexokinase 1 (HkI), 5'-GGGA-
CTATGACGCTAACATT-3' and 5'-CCAGTGCCAATGATCAGG-
3’; hexokinase 2 (Hk2), 5-GGTACAGAGAAAGGAGACTTC-3’
and 5-TCTTGTTATGCATCTCTACGC-3'; hexokinase 3 (Hk3),
5’-CACTTAACCAATCTCGGAGT-3' and 5-AGGCTATCACTT-
TCGATCTC-3’; fructose-bisphosphatase 1 (Fbpl), 5'-AGTCGT-
CCTACGCTACCTGTG-3' and 5-GGGGATCGAAACAGACAA-
CAT-3'; Pcx, 5'-GTTCCGTGTCCGAGGTGTAA-3' and 5'-AAC-
TGGGTGTCCACTGTGC-3’; phosphoenolpyruvate carboxyki-
nase 1 (Pepck), 5'-GAGATAGCGGCACAAT-3' and 5'-TTCAGA-
GACTATGCGGTG-3'; lactate dehydrogenase A (Ldha), 5'-
TGTCTCCAGCAAAGACTACTGT-3' and 5'-GACTGTACTTG-
ACAATGTTGGGA-3'; and lactate dehydrogenase B (Ldhb), 5'-
CATTGCGTCCGTTGCAGATG-3' and 5-GGAGGAACAAGCT-
CCCGTG-3'.

Histological Staining and Evaluation

For periodic acid-Schiff (PAS) staining, the kidneys were
fixed in ethyl Carnoy’s solution for 24 h and subsequently
transferred to 70% ethanol (35). Tissues were embedded in
paraffin and stained with PAS (Sapporo General Pathology
Laboratory, Sapporo, Japan). Histological evaluations were
performed as previously described (36-38). Tubular injury
was scored semiquantitatively by blinded evaluators who
examined the PAS-stained kidney sections, with 10 and 5
fields of view (x200 magnification) for the cortex and outer
stripe of the outer medulla (OSOM), respectively. Tubular
injury was defined as tubular necrosis, tubular cast forma-
tion, or loss of the brush border. The tubular injury score in
each mouse kidney was assessed on a scale of 0-5, where
0=no tubular injury, 1 = <10% tubules injured, 2 =10-25%
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tubules injured, 3=25-50% tubules injured, 4=50-75%
tubules injured, and 5 = >75% tubules injured.

To examine the degree of proximal tubule injury, Kim-1
expression was examined. The F-actin was stained with fluo-
rescein phalloidin. The dissected kidneys were postfixed in
4% paraformaldehyde for 3h and transferred to 30% sucrose
in PBS overnight at 4°C. The kidneys were embedded in OCT
compound and frozen in liquid nitrogen. The snap-frozen
kidneys were cut into 5-um-thick transverse sections using a
freezing microtome (Leica, Tokyo, Japan). Sections were
covered with 5% BSA containing 0.3% Triton X-100 at 37°C
for 60 min and then subjected to immunofluorescence anal-
ysis. Subsequently, sections were incubated overnight at
4°C with Kim-1-specific primary antibody [previously devel-
oped in our laboratory (39), 1:200], washed three times with
PBS, and incubated with Alexa Fluor 546-labeled goat anti-
rabbit IgG (Life Technologies, Tokyo, Japan, 1:400), Alexa
Fluor 488-phalloidin (Life Technologies, 1:400), and 4/,6-
diamidino-2-phenylindole at 37°C for 60 min. Images were
visualized and captured using a fluorescence microscope
(BZ-9000, Keyence, Osaka, Japan) with its software (BZ-II
Analyzer, Keyence). To evaluate protein levels of Kim-1, the
stained area in each mouse kidney was quantified and
expressed as a percentage of each section, according to pre-
vious studies (40, 41).

Statistical Analysis

Results are expressed as means + SD. Statistical analysis
was performed using GraphPad Prism version 8.0 software
(GraphPad, San Diego, CA). The data were analyzed using an
unpaired ¢ test or multiple-comparison tests after two-way or
repeated-measures ANOVA. P values of <0.05 were consid-
ered statistically significant.

RESULTS

Antibiotic Treatment Significantly Reduced Gut
Microbiota Abundance and Affected Systemic Glucose
Metabolism in Mice

To determine the effect of gut microbiome depletion on
renal glucose metabolism, mice received ABX consisting of
ampicillin, vancomycin, and levofloxacin in drinking water.
After ABX treatment for 14 days, the expression level of bac-
terial 16s rRNA and the amount of SCFAs and bile acid in the
colon or intestinal luminal contents were quantified.
Luminal 16s rRNA expression, acetate, propionate, butyrate,
cholate, deoxycholate, and ursodeoxycholate levels of ABX-
treated mice were significantly lower than those of the con-
trol group (vehicle treated; Fig. 1, A-D); this indicated that
ABX treatment effectively induced commensal depletion.

ABX-treated mice had a significantly lower body weight
than vehicle-treated mice (Fig. 1E). No significant change
was observed in plasma SCFA concentrations (Fig. 1F). ABX
treatment significantly increased the plasma GLP-1 level
(Fig. 1G) but did not affect the insulin level (Fig. 1H). An in-
traperitoneal glucose injection after 4h of fasting revealed
that the total area under the plasma glucose concentration
curve (AUC) and AUC above baseline (incremental AUC) in
ABX-treated mice were significantly lower than those in ve-
hicle-treated mice (Fig. 1, I-K). These results suggest that
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AIMD was successfully induced by the ampicillin, vancomy-
cin, and levofloxacin cocktail, consequently altering sys-
temic glucose metabolism in mice.

ABX Treatment Significantly Altered Renal Glucose
Metabolism in Mice

After ABX treatment for 14 days, renal glucose and pyru-
vate concentrations in ABX-treated mice were significantly
lower than those in vehicle-treated mice (Fig. 2, A-C). We
hypothesized that these changes in tissue concentrations of
glucose and pyruvate could subsequently alter glucose ho-
meostasis in the kidney.

To confirm whether AIMD altered glucose metabolism in
the kidney, changes in whole body glucose metabolism were
time dependently examined on days 3, 7, 10, or 14 of ABX
treatment (Fig. 3). During days 3—14, significant differences
were observed in colonic 16s rRNA expression levels and
plasma GLP-1 concentrations between ABX- and vehicle-
treated mice (Fig. 3, A and B). Compared with the control,
plasma and renal glucose levels were significantly decreased
in ABX-treated mice during days 7—14 (Fig. 3, C and D). No
significant change was observed in plasma pyruvate concen-
trations (Fig. 3E); however, renal pyruvate concentrations
were significantly decreased in ABX-treated mice on days 10
and 14 (Fig. 3F). On the other hand, no changes occurred in
plasma and renal lactate concentrations of ABX- and vehi-
cle-treated mice during days 3—14 (Fig. 3, G and H).

We then determined mRNA expression levels of G6pc and
hexokinases in whole kidney samples using quantitative RT-
PCR. The renal G6pc expression level was found to be signifi-
cantly higher in ABX-treated mice than in vehicle-treated
mice (Fig. 4A). Conversely, ABX treatment did not affect
mRNA expression levels of Hk1, Hk2, and Hk3. To clarify
whether AIMD contributed to the changes in renal gluconeo-
genesis, we further assessed mRNA expression levels of key
genes and concentrations of intermediate metabolites of glu-
cose metabolism in the renal cortex (Fig. 4, B-J). mRNA
expression levels of G6pc and Pepck in the renal cortex were
significantly higher in the ABX-treated group than in the ve-
hicle-treated group (Fig. 4B). ABX treatment did not affect
mRNA expression levels of Glutl, Glut2, Sgltl, Sgit2, Hkl,
Hk2, Hk3, Fbpl, Pcx, Ldha, and Ldhb. Similar to whole kid-
ney samples, significant decreases in glucose and pyruvate
concentrations were observed in the renal cortex after
14 days of treatment with ABX (Fig. 4, C and D). In addition,
the lactate concentration was significantly lower in ABX-
treated mice than in vehicle-treated mice (Fig. 4F). Among
the tricarboxylic acid cycle intermediates, the concentration
of malate was significantly increased by ABX treatment (Fig.
4.J). The effects of ABX on citrate, a-ketoglutarate, succinate,
and fumarate were insignificant (Fig. 4, F-I).

ABX Treatment Significantly Altered Renal Glucose
Metabolism in Mice After Ischemia

We found significant effects of renal ischemia on glucose,
pyruvate, and lactate levels in the kidneys of vehicle-treated
mice (Fig. 5, A-C). Likewise, we also observed that ABX treat-
ment significantly reduced glucose and pyruvate concentra-
tions in control kidney samples, which was consistent with
the above-mentioned results (Figs. 2 and 3). Compared with
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Figure 1. Altered glucose metabolism in antibiotic cocktail (ABX)-treated mice. For commensal depletion, ABX (1g/L ampicillin, 0.5 g/L vancomycin, and
0.5 g/L levofloxacin) was administered to mice (n=6) via drinking water for 14 days. The control group (n=6) received vehicle (sterilized water) alone. A—
D: efficacy of microbiome depletion assessed by determining expression levels of 16s rRNA (A) and amounts of short-chain fatty acids (SCFAs; B) and
bile acids [cholate (CA), deoxycholate (DCA), and ursodeoxycholate (UDCA)] (C and D) in colonic luminal contents. E—H: effects of ABX treatment on
body weight (E), plasma SCFAs (F), glucagon-like peptide 1 (GLP-1; G), and insulin (H) levels. /I-K: a glucose tolerance test was performed in fasted mice af-
ter intraperitoneal injection with glucose. Based on plasma glucose levels, the total area under the concentration curve (total AUC; J) and AUC above
baseline (incremental AUC; K) were calculated. Data are expressed as means + SD. Statistical differences were evaluated using an unpaired t test (A-D,
F-H, J, and K) or Bonferroni’s multiple-comparison test (E and /). *P < 0.05; **P < 0.01.

vehicle-treated ischemic mice, pyruvate concentrations
were significantly lower in ABX-treated ischemic mice
(Fig. 5B). However, no significant difference was observed
between control and ischemic kidney samples of ABX-
treated mice (Fig. 5B). In addition, no changes were
observed in renal glucose and lactate levels of ABX-treated
ischemic mice (Fig. 5, A and C).

Since pyruvate can be converted to acetyl-CoA and ATP,
we also quantified acetyl-CoA and ATP levels in control and
ischemic kidney samples. Ischemia significantly reduced re-
nal acetyl-CoA and ATP levels in both vehicle- and ABX-
treated mice (Fig. 5, D and E). In contrast, ABX treatment did
not affect acetyl-CoA concentrations in both control and
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ischemic kidney samples. On the other hand, ATP levels in
control kidneys were significantly lower in ABX-treated mice
than in vehicle-treated mice, whereas ATP levels were com-
parable between the ischemic kidneys of ABX- and vehicle-
treated mice.

Given the cytoprotective role of pyruvate against IR injury
(19), we also investigated the severity of renal IR injury in
ABX-treated mice. The results showed that ABX treatment
alone did not cause renal tubular injury (Fig. 6). Tubular
injury associated with IR was prominent in the OSOM (Fig. 6,
A and D). Tubular injury scores in the renal cortices and
Kim-1-positive areas in the OSOM of ABX-treated mice were
higher than those of vehicle-treated mice (Fig. 6, B-D and F).
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Figure 2. Antibiotic cocktail (ABX) treatment altered renal glucose metab-
olism in mice. A: glucose concentration in whole kidney homogenates
quantified using a colorimetric assay. B and C: pyruvate and lactate con-
centrations in whole kidney homogenates quantified using liquid chroma-
tography-tandem mass spectrometry. Data are expressed as means + SD;
n=6 mice/group. Statistical differences were evaluated using an unpaired
ttest. *P < 0.05.

DISCUSSION

Despite emerging evidence demonstrating the impact of
AIMD on host metabolic homeostasis (10, 11, 22, 23, 42, 43),
the effect of AIMD on renal glucose metabolism is yet to be
elucidated. Hence, the present study addressed this concern
by investigating the impact of AIMD on glucose metabolism
in mouse kidneys and then observing the effect of ABX treat-
ment on renal pyruvate levels after ischemia. Our findings
suggested that ABX treatment significantly altered renal glu-
cose metabolism in mice and was associated with more
severe tubular injury following renal IR.

The results of this study indicated that AIMD altered renal
glucose metabolism and pyruvate levels in mice. Significant
effects of AIMD on glucose metabolism have also been
observed in the intestine and liver (11, 23, 42), suggesting
that AIMD can alter host systemic glucose metabolism.
AIMD-induced decrease in renal pyruvate levels was possi-
bly triggered by the inactivation of glycolysis, activation of
gluconeogenesis, and facilitative conversion of pyruvate to
acetyl-CoA or lactate (Fig. 4K). In the present study, ABX
treatment upregulated G6pc and Pepck mRNA expression in
the kidney but did not affect expression levels of other key
genes involved in glucose metabolism. In addition, no signif-
icant changes in the plasma pyruvate concentration and re-
nal acetyl-CoA levels were observed. Taken together, these
findings suggest that AIMD enhances renal gluconeogenesis,
leading to decreased pyruvate levels in the kidney.

We showed that AIMD not only triggered the upregulation
of genes involved in gluconeogenesis in the kidney but also
increased plasma levels of GLP-1, an incretin hormone with
an inhibitory effect on gluconeogenesis. A previous study
showed that loss of gut microbiota was accompanied by an
increase in plasma levels of glucagon, and the increase in
plasma GLP-1 and glucagon levels resulted from the upregu-
lation of the proglucagon gene in the cecum and colon (11,
44). Glucagon has been known to regulate gene expression
levels of Pepck and G6pc through activation of a transcrip-
tion factor, forkhead box protein 1 (Foxol) (45). Therefore, in
AIMD mice, glucagon secreted from intestinal epithelial cells
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might act on renal proximal tubules, thereby affecting renal
gluconeogenesis.

The SCFAs and bile acids produced by intestinal bacteria
serve as nutrient sources for host intestinal epithelial cells.
Therefore, when the supply of these metabolites is reduced
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Figure 3. Time-dependent changes in renal glucose metabolism of antibi-
otic cocktail (ABX)-treated mice. The plasma, colon, and kidney were col-
lected after treatment with ABX or vehicle on days 3, 7, 10, and 14. The
relative abundance of 16s rRNA in the colonic luminal contents (A) and lev-
els of glucagon-like peptide 1 (GLP-1; B), glucose (C and D), pyruvate (E
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Data are expressed as means + SD; n=6 mice/group. Statistical differen-
ces were evaluated using Tukey’s multiple-comparison test. *P < 0.05;
**P < 0.01.
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by ABX treatment, the primary energy source for enterocytes vehicle-treated mice, colon concentrations of SCFAs were
may change, triggering increased glucose utilization (11). 10-100 times higher than the plasma concentration.
Contrariwise, we found that ABX-induced loss of colonic Therefore, we reasoned that most SCFAs produced in the
SCFAs did not affect plasma SCFA concentrations. In gastrointestinal tract are consumed by intestinal epithelial
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Figure 5. Antibiotic cocktail (ABX) treatment reduced renal pyruvate levels during ischemia. After 14 days of treatment with ABX or vehicle, mice were
subjected to unilateral renal pedicle clamping (ischemia model) for 60 min, with the contralateral kidney as the control. Levels of glucose (A), pyruvate
(B), lactate (C), acetyl-CoA (D), and ATP (E) in whole kidney samples were determined. Data are expressed as means + SD; n=4 or 6 mice/group.
Statistical differences were evaluated using an unpaired t test. *P < 0.05; **P < 0.01.

cells and hepatocytes and that the contribution of micro-
biota-derived SCFAs to the amount of circulating SCFAs in
mice is low.

Antibiotics are commonly prescribed in general medical
practice, and nephrotoxic antibiotics, such as aminoglyco-
sides (46) and glycopeptides (47), are believed to cause AKI
(48, 49). However, the mechanisms underlying antibiotic-
associated AKI are not fully understood. The present results
suggested that ABX treatment increased the vulnerability of
kidneys to IR injury. This concept may be supported by
recent studies where the effect of microbiome depletion or
dysbiosis on renal IR injury was examined (50, 51). In these
previous studies, researchers indicated that the antibiotic-
induced changes in gut microbiome composition could be
associated with the development of kidney injury and that
germ-free mice exhibited an increase in injury grading scales
of tubular necrosis following renal IR (16, 29). In addition, we
found that ABX treatment significantly altered renal pyru-
vate levels in both control and ischemic kidneys. Pyruvate
not only acts as an intermediate in glucose metabolism to
produce ATP but also exerts cytoprotective effects against
tissue injury in the kidney (52), liver (53), heart (54), and
brain (55, 56). Therefore, the adverse effects of microbiome
depletion on the kidneys might be due to the reduced renal
pyruvate levels. Alternatively, Yang et al. (57) reported that
oral administration of four broad-spectrum antibiotics
(ampicillin, metronidazole, neomycin, and vancomycin)
ameliorated tubular necrosis following IR injury in mice,
and they suggested that this renoprotective effect is partly
mediated by the reduction of T helper cell 17 and T helper
cell 1 responses, expansion of regulatory T cells, and M2 mac-
rophages. Similarly, a study by Emal et al. (58) demonstrated
that concomitant administration of antibiotics (ampicillin,
metronidazole, neomycin, and vancomycin) with glucose
protects the proximal tubules against IR injury, suggesting
that antibiotic treatment may have affected the maturation
of renal resident macrophages and bone marrow-derived
monocytes. However, in the latter two studies, the degree of
microbiome depletion, plasma glucose levels, and renal py-
ruvate levels were not evaluated. Thus, combined with our
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results and previous studies, the degree of gut microbiome
depletion or renal pyruvate reduction may help determine
the prognosis of the kidney following renal IR injury.
However, further studies are warranted to fully elucidate
this concept.

Given the large number of patients using antibiotics, it is
important to understand the effect of antibiotics on renal
physiology. The results of the present study suggest that
antibiotic use may cause renal metabolic remodeling.
Nonetheless, there are several limitations in the present
study. First, we used ABX to eliminate gut bacteria. Second,
we only focused on glucose metabolism; therefore, future
studies are required to examine the effect of a single antibi-
otic class on global metabolic changes in the kidney. Third,
our results could not provide cell- or organelle-specific
insights. However, proximal tubular epithelial cells have a
substantial capacity for gluconeogenesis (59, 60), with the
proximal tubular mass constituting more than 50% of nor-
mal kidney volume (61); thus, the observed metabolic alter-
ations reflected, at least in part, physiological changes in
proximal tubules.

In conclusion, our data highlight the significant impact of
AIMD on renal glucose metabolism in mice. Furthermore,
this is the first report, to our knowledge, confirming that
AIMD is associated with decreased levels of pyruvate, a key
intermediate in glucose metabolism, which may have been
caused by renal gluconeogenesis activation. Therefore, we
hypothesize that AIMD can increase the susceptibility of kid-
neys to IR injury, which may be associated with the reduced
renal pyruvate concentrations observed following ABX
treatment.

Perspectives and Significance

We found that AIMD in mice was associated with pyruvate
reduction and upregulation of G6pc and Pepck in the renal
cortex. These results suggest that AIMD enhances renal glu-
coneogenesis and further gives the perspective that antibi-
otic use may cause renal metabolic remodeling. Future
studies are required to examine the effect of a single antibi-
otic class on global metabolic changes in the kidney. In
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addition, the present results suggested that antibiotic treat-
ment increased the vulnerability of kidneys to IR injury. The
degree of gut microbiome depletion or renal pyruvate reduc-
tion may help determine the prognosis of the kidney follow-
ing renal IR injury. However, further studies are warranted
to fully elucidate this concept.
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