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Abstract Aging is a physiological process mediated

by numerous biological and genetic pathways, which

are directly linked to lifespan and are a driving force

for all age-related diseases. Human life expectancy has

greatly increased in the past few decades, but this has

not been accompanied by a similar increase in their

healthspan. At present, research on aging biology has

focused on elucidating the biochemical and genetic

pathways that contribute to aging over time. Several

aging mechanisms have been identified, primarily

including genomic instability, telomere shortening,

and cellular senescence. Aging is a driving factor of

various age-related diseases, including neurodegener-

ative diseases, cardiovascular diseases, cancer,

immune system disorders, and musculoskeletal disor-

ders. Efforts to find drugs that improve the healthspan

by targeting the pathogenesis of aging have now

become a hot topic in this field. In the present review,

the status of aging research and the development of

potential drugs for aging-related diseases, such as

metformin, rapamycin, resveratrol, senolytics, as well

as caloric restriction, are summarized. The feasibility,

side effects, and future potential of these treatments

are also discussed, which will provide a basis to

develop novel anti-aging therapeutics for improving

the healthspan and preventing aging-related diseases.
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Introduction

Since the dawn of human civilization, the desire for

immortality has been a common pursuit. Due to

improvements in living conditions and the continuous

development of medical technology, human lifespan

has increased dramatically over the last century

(Campisi et al. 2019). Aging is the irreversibly

progressive decline of physiological function, which

eventually leads to age-related diseases, such as

cardiovascular diseases, musculoskeletal disorders

and arthritis, neurodegenerative diseases, and cancer.

These age-related diseases produce a heavy economic

and psychological burden for patients, their families,

and society as a whole (de Magalhães et al. 2017). The
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primary feature of aging is the accumulation of

cellular senescence (López-Otı́n et al. 2013) induced

by destructive stimuli from inside and outside the cell

(Hernandez-Segura et al. 2018). Cellular senescence

affects the body in two ways. Firstly, excessive

accumulation of senescent cells inevitably affects

tissue regeneration. Secondly, senescent cells secrete a

large number of inflammatory factors and present with

the senescence-associated secretory phenotype

(SASP), which has negative effects on the surrounding

environment (López-Otı́n et al. 2013; Baker et al.

2016) found that although AP20187, a synthetic drug

that activates FK506-binding protein-fused Casp8,

effectively cleared senescent cells with high expres-

sion of p16 (Ink4a) and prolonged the lifespan of mice,

some of the mice had elevated urea levels and

exhibited severe thrombocytopenia (Baker et al.

2016). Bael et al. (2018) found that WM-1119, an

inhibitor of the histone acetyltransferases KAT6A and

KAT6B, could induce cellular senescence and arrest

tumor growth in mice with lymphoma. Silva-Álvarez

et al. (2020) found that the removal of senescent cells

from adult zebrafish with limb amputation injuries was

harmful to tissue regeneration (Da Silva-Álvarez et al.

2020). Thus, blocking cellular senescence may cause

other complications. Therefore, cellular senescence is

a double-edged sword when it comes to maintaining

cellular balance.

Many strategies for ameliorating age-related dis-

eases have been extensively studied, including calorie

restriction through the control of diet and exercise and

pharmaceutical treatments targeting specific cells and

molecules (Di Daniele et al. 2017; Leong 2018).

Although these treatments have achieved significant

effects in various models, medication for the elderly is

still a challenging issue that needs careful attention.

This is because insufficient clinical data indicate that

these drugs have a positive effect. On the other hand,

careful consideration must also be given to the

possible negative effects of these drugs. In this review,

the mechanisms of aging will be described, several

aging-related diseases will be identified to demon-

strate the possible consequences of aging, and an

analysis of the feasibility of targeted aging therapies

will be performed to pave the way for future research

on aging biology.

Hallmarks of aging

In order to illuminate the mechanisms and effects of

anti-aging therapies on aging-related diseases, the

cellular and molecular markers for aging must first be

clarified. Based on the study of many different types of

organisms, especially mammals, nine factors and

related candidate markers are usually considered

when determining the aging phenotype (López-Otı́n

et al. 2013).

Genomic instability

One commonly accepted cause of aging is the

accumulation of genetic damage, which could disrupt

cell homeostasis and result in genome instability

(Kubben and Misteli 2017). Somatic mutations, chro-

mosomal aneuploidy, and copy mutations all con-

tribute to exacerbating damage to the DNA (Tiwari

and Wilson 2019). As humans age, defects appear in

the DNA repair mechanism, which affects the expres-

sion of essential genes and the transcription pathways,

leading to cell dysfunction. A large number of

preclinical studies indicate that damaged DNA repair

capability can lead to the occurrence of premature

aging syndromes, such as Werner syndrome and

Bloom syndrome (Foo et al. 2019). In addition,

mutations in aged mitochondrial DNA and deficits in

the nuclear lamina can also cause genome instability

(Kauppila et al. 2018). Genome damage is closely

related to aging, so interventions that can stabilize the

genome and restore DNA repair capabilities should be

explored to define its impact on aging.

Reduced telomere length

Telomeres are repetitive sequences at the distal ends of

chromosomes. If telomeres reach a critically short

length during cell division, known as the Hayflick

limit, it triggers DNA damage and cellular senescence

(Hayflick and Moorhead 1961; Herrmann et al. 2018).

Importantly, telomere shortening also shows during

natural aging in both humans and mice (Zhu et al.

2019). Also, numerous epidemiological studies have

indicated that telomere depletion was significantly

correlated to aging, biological morbidity, and mortal-

ity (Mensà et al. 2019). Telomerase, which is highly

expressed in embryonic stem cells to extend telom-

eres, cannot be detected in most normal human cells
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(Saretzki 2018). Ullah et al. (2019) found that

impaired telomerase activity accelerated senescence

of stem cells (Ullah and Sun 2019). Jesus et al. (2012)

reported that activation of telomerase activity through

viral transduction could extend the survival time and

reduce the incidence of cancer in wild-type mice (de

Jesus et al. 2012). Notably, cells with short telomeres

may escape senescence and become immortalized,

usually by activating or upregulating telomerase.

However, most human cancers have shorter telomeres

and increased activity of telomerase (Shay 2016). Or it

can be thought of in another way that the senescence

caused by the shorter telomeres and limited telomerase

activity may be the mechanism that prevents tumori-

genesis in some large and long-lived mammals. There

are several telomerase inhibitors in clinical phase II

trials for the treatment of various cancers (Shay 2016).

Telomere shortening can cause mammalian aging,

while telomerase can reverse this phenomenon.

Therefore, telomerase and its regulation of telomere

length are important therapeutic targets for cancer and

age-related diseases. Therefore, targeting telomeres or

telomerase may be a strategy for developing innova-

tive drug therapies to delay aging.

Epigenetic alterations

Modifications of chromatin include alterations in

DNA methylation, histone modifications, and chro-

matin remodeling, which are related to cell aging

(Kane and Sinclair 2019). Sirtuin families have been

studied extensively as potential anti-aging factors.

Ravi et al. (2019) reported that SIRT6 gene deletion

severely affects cardiac function in mice and that

inhibition of mTOR or Sp1 can eliminate the negative

effects of SIRT6 gene deletion (Ravi et al. 2019). In

addition, SIRT1 and SIRT3 genes all contribute to the

improvement of healthy aging in mammals (Morigi

et al. 2018). With aging, mammalian cells undergo

global and local DNA hypomethylation (Kane and

Sinclair 2019). Maierhofer et al. (2019) confirmed that

DNA methylation and histone modifications were

increased in mouse models of the premature aging

syndrome (Maierhofer et al. 2019). However, there is

still no evidence that DNA methylation can be

changed to prolong life. It was shown that epigenetic

changes could be reversed to some extent (Chen and

Kerr 2019). Azacitidine and decitabine are epigenetic

modifiers that have been approved by the FDA for

treating myelodysplastic syndromes (MDS) and acute

myeloid leukemia (AML). In clinical trials, both

compounds have been shown to improve patients’

pathology results while extending their average life

expectancy (Kantarjian et al. 2012). Overall, under-

standing and manipulating the epigenome holds

promise for improving age-related pathologies and

extending a healthy lifespan.

Loss of proteostasis

The occurrence of aging and most aging-related

diseases are related to the impairment of protein

homeostasis. Protein aggregation, post-translational

modification, and altered protein turnover are hall-

marks of aging (Basisty et al. 2018). Autophagy and

the ubiquitin-proteasome system are the primary

protein degradation systems of the cells (Kaushik

and Cuervo 2015; Klaips et al. 2018), and their activity

declines with aging. Studies showed that the autop-

hagy activators, such as rapamycin and spermidine,

could extend the lifespan of yeast, nematodes, fruit

flies, and mice (Wong et al. 2020). In addition,

reducing protein synthesis by inhibiting the mTOR

signaling pathway and calorie restriction also prolongs

the lifespan (Basisty et al. 2018). Sorrentino et al.

(2017) reported that maintaining protein homeostasis

could reduce the aggregation of amyloid protein in

Alzheimer’s disease (AD) transgenic nematodes and

mice and increased the lifespan of the test animals to a

certain extent (Sorrentino et al. 2017). Collectively,

studies on protein synthesis, quality control, and

degradation pathways strongly suggest that mainte-

nance of proteostasis is essential for health and

longevity.

Deregulated nutrient sensing

Nutrient sensing through insulin/IGF-1 (IIS) was the

first pathway demonstrated to regulate aging and age-

related diseases in organisms. Pharmacological or

caloric restriction (CR) targeting nutrient signaling

pathways have been shown to attenuate aging in many

organisms (Santos et al. 2016). Attenuating the

signaling activity of the IIS pathway consistently

extended the lifespan (Mathew et al. 2017). Bitto et al.

(2016) stated that transient rapamycin treatment could

inhibit the mTOR signaling pathway, thereby extend-

ing the lifespan of middle-aged mice (Bitto et al.
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2016). Downregulation of mTORC1 expression also

improved the average lifespan of yeast, elegans, and

fruit flies (Arriola Apelo and Lamming 2016). The

other two sensors in the IIS axis are AMPK and

sirtuins. Emerging studies have demonstrated that

metformin could activate the AMPK signaling path-

way to extend the lifespan. Salminen et al. (2017)

found that fibroblast growth factor 21 (FGF21) could

extend the lifespan of mammals by activating AMPK

signaling (Salminen et al. 2017). Studies also showed

that CR could extend the lifespan of these model

organisms by regulating the sirtuin family (Kapahi

et al. 2017). Therefore, the synthesis and decomposi-

tion pathways of nutrient metabolism should be

considered for targeted anti-aging therapies. Mean-

while, the complexity of certain signal pathways

should also be deliberated. For example, the inhibition

of mTOR will cause slow wound healing, insulin

resistance, and other adverse reactions such as induced

cataracts (Zaza et al. 2018).

Cellular senescence

Cellular senescence is a state of cell cycle arrest

(Hernandez-Segura et al. 2018). The general view

holds that aging is caused by a large accumulation of

senescent cells in the tissue. The senescence-related

secreted phenotype (SASP) and DNA damage are the

main factors leading to senescence (Hernandez-Se-

gura et al. 2017). In addition, mitochondrial dysfunc-

tion-associated senescence (MiDAS) is associated

with mild or no transcriptional induction of several

SASP factors (Wiley et al. 2016). For instance,

inhibition of the IL-1 receptor reduced the expression

of SASP and partially prevented oncogene-induced

senescence (OIS) (Acosta et al. 2013). At the same

time, many SASP factors exert non-cell-autonomous

function and cause neighboring cells to age (Acosta

et al. 2008; Ritschka et al. 2017). The critical role of

p16INK4a and p53 in the induction of cell senescence

has favored the hypothesis that they contribute to

physiological aging (López-Otı́n et al. 2013). Cao

et al. (2003) showed that the aging status of premature

mutant mice can be significantly reduced by eliminat-

ing p16INK4a or p53, which was consistence with the

findings of other groups (Baker et al. 2011; Cao et al.

2003). However, mice with a mild and systemic

increase in p16INK4a, p19ARF, or p53 tumor suppres-

sors exhibited an extended lifespan (Matheu et al.

2007). However, it is worth noting that cellular

senescence can also be beneficial. In fact, senescence

is a potent anti-cancer mechanism that, as mentioned

earlier, can prevent malignancy by limiting the

replication of preneoplastic cells in the early stage.

Several drugs, such as docetaxel, bleomycin,

cyclophosphamide, doxorubicin, that are used in the

clinical treatment of cancer are formally based on this

feature of cellular aging known as therapy-induced

senescence (TIS) (Calcinotto et al. 2019). In summary,

cell senescence is a double-edged sword, which can

either present a beneficial compensatory response to

damage, or accelerate aging by exhausting tissue

regeneration. Therefore, it is necessary to consider

these two processes when developing new

interventions.

Stem cell exhaustion

The loss of regenerative ability in tissues and organs is

also one of the important features that cause aging. For

example, with advancing age, the activity of

hematopoietic stem cells decreases, which can lead

to a series of pathological manifestations, such as a

reduced adaptive immune response, an increased risk

of anemia, and a decreased number of lymphoid cells

(Goodell and Rando 2015). The same problem occurs

in intestinal stem cells (ISCs). Compared with young

mice, the number of ISCs in older mice is maintained

at a lower level, resulting in a breakdown in intestinal

structure and function (Keyes and Fuchs 2018). An

important debate regarding the decline in stem cell

function is the relative role of cell-intrinsic compared

to cell-extrinsic pathways (Conboy and Rando 2012).

Transplantation of muscle-derived stem cells from

young mice to progeroid mice extended their lifespan

and improved tissue function even though donor cells

were not detected, suggesting that their therapeutic

benefit may derive from systemic effects caused by

secreted factors (Lavasani et al. 2012). Furthermore,

using a parabiosis model, it has been demonstrated

that the decline in neural andmuscle stem cell function

in old mice can be reversed by systemic factors from

young mice (Xiong et al. 2018). Overall, targeting the

senescence of stem cells has become a challenging

problem that may provide novel concepts for thera-

peutic intervention.
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Mitochondrial dysfunction

Mitochondria dysfunction could cause a deficit in the

respiratory chain, increased reactive oxygen species

(ROS) production, reduced ATP levels (Green et al.

2011; Harman 1965), promote apoptosis and trigger

inflammation, which causes a variety of age-related

diseases. However, numerous studies have shown that

increased mitochondrial ROS production and oxida-

tive damage cannot reduce the lifespan of model

organisms (Kauppila et al. 2017). This is because it is

only when the ROS level exceeds a certain threshold

that age-related damage is aggravated (Hekimi et al.

2011). Hood et al. (2019) pointed out that an

imbalance in the mitochondrial network and impaired

mitochondrial function will lead to an imbalance in the

metabolic state of skeletal muscle and a decrease in

muscle mass. Exercise can slow the aging process

caused by mitochondrial imbalance (Hood et al.

2019). However, it is still uncertain whether improv-

ing mitochondrial function can delay aging and

prevent or treat age-related diseases.

Altered intercellular communication

Cellular communication also plays an important role

in the aging process by regulating neuroendocrine,

endocrine, and neuronal levels (Diamanti-Kandarakis

et al. 2017). Neurohormonal signalings (e.g., renin-

angiotensin, adrenergic, and insulin-IGF1 signaling)

tend to mediate aging as inflammatory reactions

increase, and the immunosurveillance environment

changes (Salminen et al. 2012). Inflammation could be

caused by the accumulation of proinflammatory

cytokine secretion in senescent cells, an altered

autophagy response, and increased NF-jB signaling

(Green et al. 2011; Salminen et al. 2012; Senovilla

et al. 2012). Genetic and pharmacological inhibition of

NF-jB signaling could prevent age-related features in

aging mouse models (Osorio et al. 2012). Inflamma-

tion and stress can activate the NF-jB signaling

pathway in the hypothalamus, resulting in reduced

GnRH. GnRH treatment can prevent impaired neuro-

genesis and slow down the aging process in mice

(Zhang et al. 2013). Similar results also occurred in

sirtuins. Pharmacological activation of SIRT1 may

prevent inflammation in mice (Gillum et al. 2011).

SIRT2 and SIRT6 also down-regulate inflammation

through deacetylating NF-jB subunits and

suppressing the downstream target genes (Kawahara

et al. 2009; Yuan et al. 2016). In addition, cellular

senescence influences neighboring cells via gap-

junction contacts, growth factors, interleukins, and

ROS, highlighting the importance of the microenvi-

ronment in modulating aging at different levels

(Nelson et al. 2018). A large number of studies have

shown that the change in intercellular communication

is closely related to senescence. In a recent follow-up

study, metformin significantly inhibited the expres-

sion of pro-inflammatory cytokines and reduced the

associated risk of death in elderly diabetic patients

(Tizazu et al. 2019). In primary hepatocytes, met-

formin inhibits TNF-a-dependent NF-jB signaling

and the expression of IL-6 and IL-1b by its unique

anti-hyperglycemic mechanism (Cameron et al. 2016;

Moiseeva et al. 2013). Resveratrol could also signif-

icantly reduce the peripheral secretion of inflamma-

tory factors in patients with grade one hypertension by

improving intercellular communication (Li et al.

2018). As such, cellular senescence interferes with

tissue homeostasis and regeneration and is responsible

for aging-related diseases (van Deursen 2014). On the

other hand, senescent cells can also play an active role

in embryogenesis and tissue remodeling. For example,

senescence is an effective barrier against tumorigen-

esis (Calcinotto et al. 2019). In the following, age-

related diseases associated with cellular senescence

and the potential targets of anti-aging drugs, from a

theoretical basis of the mechanisms behind aging-

related diseases, will be discussed.

Age-related diseases

Aging is the driving factor of various age-related

diseases, and it causes a significant burden on social

and economic stability. Based on the study of the

Global Burden of Disease in 2017(GBD 2017), 92 of

293 (31.4%) diseases were determined to be age-

related (Lublóy 2020). The most common aging-

related diseases included neurodegenerative diseases,

cancer, cardiovascular diseases, and metabolic

diseases.

Neurodegenerative diseases

Aging is the most common risk factor for the

development of neurodegenerative diseases.
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Alzheimer’s disease (AD) is the most common

neurodegenerative disease in the world, and its

incidence increases with advancing age (Trevisan

et al. 2019). The characteristics of AD include

extracellular amyloid plaques, intracellular neurofib-

rillary tangles (NFTs), and hyperphosphorylation of

Tau protein (Xia et al. 2018; Janczura et al. 2018).

Janczura et al. (2018) and Graff et al. (2012) found that

histone acetylation was significantly reduced in the

brains of AD patients and mice. Indirectly enhancing

histone acetylation by chronic inhibition of histone

deacetylases (HDACs) was able to reverse the cogni-

tive deficits in a mouse model of AD (Kilgore et al.

2010). Aged mice and humans have a reduction in the

number of neurons compared to their younger coun-

terparts (Donev et al. 2009; Fabricius et al. 2013).

Also, brain aging is mainly manifested by a large panel

of pro-inflammatory factors characterized by SASP,

altered signaling, and the accumulation of senescent

glia (Harry 2013). The role of microglia in AD

pathogenesis is complex (Wyss-Coray and Rogers

2012). Normally, microglia plays the role of a

‘‘scavenger’’, which is the main phagocytic cell in

the brain, and performing a central role in the

clearance of Ab. However, the effectiveness of this

clearance decreases with the development of AD (Njie

et al. 2012; Olah et al. 2018) reported elderly

microglia to have a more inflammatory phenotype

(Olah et al. 2018). These findings showed that aged

microglia presented both impaired neuroprotective

abilities and low-grade neuroinflammation, but sus-

tained secretion of the SASPs that drive inflammation

in neurodegeneration. Additionally, reactive astro-

cytes are induced in various human neurodegenerative

diseases, including AD (Liddelow and Barres 2017).

Also, the number and the neurogenesis capability of

neural stem cells (NSCs) decreases with age (Apple

et al. 2017; Fan et al. 2017). Conversely, transplan-

tation of NSCs slows the progression and restores

spatial memory ability in ADmice (Zhang et al. 2017).

Parkinson’s disease (PD) is also a neurodegenera-

tive disease (Jankovic and Kapadia 2001). The

prevalence of PD increases significantly, by approx-

imately ten times, between 50 and 80 years of age

(Pringsheim et al. 2014). The loss of dopaminergic

neurons in the substantia nigra (SN) is considered a

hallmark of PD (Kanaan et al. 2007). Several studies

have shown that PD has the same cell function

impairment seen in the aging process. The ubiquitin-

proteasome system and lysosome in the brains of

people with PD were mutated and showed histological

signs of impaired function (Jankovic and Kapadia

2001). In addition, microglia cells showed increased

staining intensity and transformation to activate

phagocytic morphology during senescence, which

occurs preferentially in the vulnerable vtSN region

in PD. Compared to other sub-regions, the vtSN in

elderly monkeys showed an excessively large micro-

glia response, suggesting that the vtSN is more prone

to neuroinflammation after being injured (Kanaan

et al. 2008).

Cardiovascular disease

Aging has a significant effect on the heart and arterial

system, leading to an increased prevalence of cardio-

vascular diseases (CVD), such as atherosclerosis,

hypertension, myocardial infarction, and stroke

(Donato et al. 2018). By 2030, about 20% of the

population will be over 65 years old, and CVD will

cause 40% of all deaths (Heidenreich et al. 2011).

Aging cardiovascular tissues demonstrate pathologi-

cal alterations, including hypertrophy, altered left

ventricular (LV) diastolic function, diminished LV

systolic reserve capacity, increased arterial stiffness,

and impaired endothelial function (Lakatta and Levy

2003). Telomere shortening is related to the occur-

rence of CVD, vascular cell aging, aortic valve

stenosis, cardiovascular risk factors (i.e., hyperten-

sion, type 2 diabetes, obesity, and smoking), and

arterial thrombotic events. However, the causality of

these associations remains uncertain (Kurz et al.

2006). The age-dependent deficiency of adrenergic

signal transduction and calcium treatment, which are

associated with cell aging, can also cause incompe-

tence and reduced muscle strength of the LV, and

affects exercise endurance (Paneni et al. 2017). The

age-dependent changes to mitochondrial adaptor

p66Shc profoundly affect the steady-state of the

cardiovascular system. Clinical studies have shown

that p66 Shc expression is significantly increased in

stroke patients (Spescha et al. 2013, 2015) also

confirmed that the production of ROS in the brain of

p66 Shc-deficient mice was reduced, and the size of

stroke was reduced after ischemia-reperfusion brain

injury (Spescha et al. 2013). Genome instability is also

a risk factor for CVD. Hutchinson–Gilford progeria

syndrome, characterized by massive nuclear DNA
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damage, is associated with premature atherosclerosis

and CVD, which leads to fatal myocardial infarction

(MI) or stroke by age 13 on average (Capell et al.

2007). In addition, abnormal epigenetic modifications

also affect the incidence of CVD. SIRT6 can prevent

endothelial dysfunction and atherosclerosis (Xu et al.

2016). SIRT1 overexpression improves the metabolic

efficiency and endothelial function of aged mice

(Winnik et al. 2015). The dysregulation of angiogenic

pathways is associated with age-dependent reductions

in the number and functionality of stem, and progen-

itor cells, including circulating angiogenic cells

(CACs) and bone marrow (BM) derived cells

(Lähteenvuo and Rosenzweig 2012).

Cancer

From 2010 to 2030, the aging of the US population

will lead to a 67% increase in the incidence of cancer

among Americans over 65 years of age (Smith et al.

2009). With the accumulation of senescent cells, the

expression of SASP will increase and promote an

inflammatory state, enhancing the invasive capabili-

ties and accelerating the progression of cancer (Faget

et al. 2019; Hartley et al. 2017). NF-jB and p38MAPK

signaling pathways play important roles in the release

of SASPs, which promote epithelial-mesenchymal

transition (EMT) in cancer cells (Coppé et al. 2010).

Epigenetic modification is an important link between

aging and cancer. Aberrant methylation patterns are

observed in almost all neoplasms. For example,

p21WAF1 / CIP1, p16INK4a, and the hypermethylation

of these genes could drive carcinogenesis (Baylin and

Ohm 2006; Li and Tollefsbol 2010). Fraga et al.

(2005) found that cancer cells often exhibit losses in

both histone acetylation and methylation, especially in

H4 at the acetylated Lys16 and trimethylated Lys20

residues (Fraga et al. 2005). Histone acetyl dehydro-

genase (HDAC) is closely related to the progression

and prognosis of certain types of cancer, such as

urogenital, reproductive, and gastrointestinal cancers

(Li and Seto 2016). Histone deacetylase inhibitors

(HDACi), such as MS-275 and SAHA, could trigger

the apoptosis of advanced thyroid cancer by inhibiting

HDAC1 and HDAC2 (Lin et al. 2019; Ma et al. 2019).

Immune system diseases

The immune system also undergoes dramatic aging-

related changes, which could cause the body to lose its

ability to fight against infection and cancer and

increase the risk of autoimmune diseases (Sadighi

Akha 2018). The decline of the immune system is

characterized by a shift in T-cell phenotype from

native to memory, fewer early progenitor B cells, an

increased proportion of mature T-cells, as well as

chronic low-grade inflammation (Ray and Yung

2018). Naı̈ve CD4? T cells isolated from older

humans and mice showed lower responsiveness to

T-cell receptor stimulation and altered cytokine

secretion profiles compared with Naı̈ve CD4? T cells

isolated from young hosts. Also, the function of naı̈ve

CD4? T cells to produce antibodies against B cells

was reduced (Pereira et al. 2020; Raphael et al. 2020).

However, age-dependent changes in the composition

of memory CD4? T cell subsets also imply a

weakened immune response to viral infections (e.g.,

influenza virus and vaccines) (Gustafson et al. 2020).

One of the hallmarks of age-related changes in the

human immune system is the accumulation of CD28-

CD8? T cells, which are absent in neonates and

constitute the majority (80–90%) of circulating CD8?

T cells in the elderly. Accumulation of CD28-

CD8 ? T cells has also been found in viral infections

such as COVID-19, which explains why the majority

of patients with severe cases of COVID-19 are elderly

(Pietrobon et al. 2020). In addition, naive CD4 ? T

cells had longer telomeres than memory CD4?T cells,

and the difference in telomere length may reflect the

number of cell divisions experienced by memory cells

in vivo (Patrick and Weng 2019). Rufer et al. (1999)

reported that telomere shortening was also found to

occur during the transition from naı̈ve to memory

CD8 ? T cells (Rufer et al. 1999). The aging lung is

not only less functional, but it also has a reduced

ability to prevent infections from environmental

stresses and injuries. The aging of immune cells may

lead to the development of disease. Th17 cells are

predominantly observed in elderly asthmatics, in

contrast to the Th2 inflammatory milieu presented in

most young patients. Since Th17 cells can develop

from the same lineage as anti-inflammatory regulatory

T cells (Tregs), a preferential shift toward a Th17

response may reduce Tregs and promote the develop-

ment of a pro-inflammatory environment in the elderly
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(Bullone and Lavoie 2017; Diller et al. 2016; Doe et al.

2010).

Musculoskeletal disorders

The elderly are prone to injuries and degenerative

musculoskeletal disorders. Sarcopenia and

osteoarthritis (OA) are among the most common

aging-related musculoskeletal disorders and have a

significant economic impact (Grote et al. 2019).

Sarcopenia is defined as the loss of muscle mass and

function with age. Skeletal muscle mass and function

decline by 30–50% by age 80, with the degree of

muscle mass loss being worse in the elderly who are

inactive. Increased inflammation leads to further ROS

generation in skeletal muscles, which increases cell

apoptosis and affects skeletal muscle catabolism

(Musci et al. 2020). Impaired mitochondrial function

and weakened antioxidant defenses have also been

found to be associated with the development of

sarcopenia (Gaffney et al. 2018). In addition, a

growing number of studies have linked neuromuscular

remodeling to muscle atrophy. Sheth et al. (2018)

found that a decline in the number of motor units

occurs before the loss of muscle function, which is due

to reduced muscle size and contractility (Sheth et al.

2018). IL-6 inhibition is an approved and clinically

effective therapy for rheumatoid arthritis (Favalli

2020). However, Costa et al. found that IL-6 knockout

mice developed more severe symptoms of OA in old

age, which suggests that OA is mediated by a

combination of pro- and anti-inflammatory factors

(da Costa et al. 2016). Spectral tracing experiments in

mice have shown that the loss of chondrocytes

proliferation activities due to aging may contribute

to the progression of OA (Kozhemyakina et al. 2015).

Accumulated DNA damage and oxidative stress also

accelerate OA, and Didier et al. found that miR-24

inhibition of p16INK4A expression prevented chondro-

cyte senescence (Philipot et al. 2014). In addition, OA-

associated reductions in AMPK activity have been

observed in aged mice, and this reduced activity

indicated a significant reduction in mitochondrial

biogenesis (Wang et al. 2015; Caramés et al. 2015)

demonstrated a significant decrease in autophagy

protein expression due to decreased AMPK activity,

resulting in increased levels of apoptosis and cartilage

deficit in OA mice (Caramés et al. 2015). In summary,

interventions to remove senescent cells and slow down

cellular senescence can be considered for treating

musculoskeletal disorders such as sarcopenia and OA

in the elderly.

Anti-aging drugs

Anti-aging is a very promising and yet challenging

field, which is complicated by the mechanisms of

aging. Some FDA approved drugs target one or more

molecules to reduce cellular damage and prolong the

healthspan. Next, this review will examine examples

of the data obtained for these drugs in different model

organisms and clinical trials to promote future direc-

tions for the continued study of aging biology. In

addition, some of the possible side effects of these

drugs in humans and animal models will be discussed.

Metformin

Metformin is a widely prescribed medication, which

has been used to treat type 2 diabetes (T2D) in the past

century (Pryor and Cabreiro 2015). At the same time,

metformin has been shown to effectively reduce the

pathogenesis and mortality of cardiovascular diseases

(Palmer et al. 2016). Compared with other hypo-

glycemic drugs, elderly patients taking metformin

have a lower risk of death due to cardiovascular

disease (Schlender et al. 2017). In addition, recent

studies have found that metformin has a positive effect

on cancer, neurodegenerative diseases, and polycystic

ovary syndrome (Barzilai et al. 2016). For example,

metformin leads to decreased insulin levels and IGF-1

signaling (Liu et al. 2011), activation of AMPK (Cho

et al. 2015), inhibition of mTOR (Nair et al. 2014;

Pérez-Revuelta et al. 2014), a reduction in ROS

(Batandier et al. 2006), and DNA damage (Shown in

Fig. 1) (Algire et al. 2012; Cabreiro et al. 2013) found

that metformin extended the lifespan of Caenorhabdi-

tis elegans by changing microbial folate and methion-

ine metabolism (Cabreiro et al. 2013). Metformin also

has positive prevention and treatment effects on aging-

related diseases. After continuous injection of met-

formin in SAMP8mice for eight weeks, the expression

of APPc99 and pTau in the mice brain was signifi-

cantly reduced, and the learning and memory abilities

of the mice were significantly improved (Farr et al.

2019). Ou et al. (2018) found that metformin exerted a

neuroprotective effect on APP/PS1mice via triggering
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Fig. 1 Metformin targets the major pathways of aging.

Extracellularly, metformin decreases insulin levels and IGF-1

signaling while influencing multiple cytokines to participate in

anti-aging processes. Intracellularly, metformin reduces ROS

production by inhibiting mitochondrial complex I in the electron

transport chain generation and AMPK activation, simultaneous

increase in mTOR signal inhibition and SIRT1 activation, which

resulting in a longer life-span; Metformin affects inflammatory

responses, cellular stress responses and autophagy responses,

etc. by acting both inside and outside the cell. These cellular

processes are the primary biological responses associated with

aging
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neurogenesis and anti-inflammation by regulating

AMPK/mTOR/S6K/Bace1 and AMPK/P65 NF-jB
signaling in the hippocampus (Ou et al. 2018). In

addition, metformin inhibited SNCA phosphorylation

and aggregation, reduced oxidative stress, and

improved MPTP-induced motor and cognitive dys-

function in mice with PD (Lu et al. 2016; Patil et al.

2014). A survey of older adults with diabetes in

Singapore also found that long-term treatment with

metformin in patients with T2D may reduce the risk of

dementia and cognitive impairment (Ng et al. 2014).

In addition to glucose homeostasis, the involvement

of the tumor suppressor pathway is another target for

metformin’s action. A growing number of studies have

shown that metformin has an inhibitory effect on some

cancer cells in vivo and in vitro, such as rectal cancer

and p53 mutant colon cancer (Algire et al. 2010;

Buzzai et al. 2007; Gwinn et al. 2008; Hirsch et al.

2009; Hosono et al. 2010). In clinical trials, metformin

also exerted excellent anti-cancer effects. A meta-

analysis of diabetic patients treated with metformin

and other drugs demonstrated a 30% lower incidence

of cancers in metformin-allocated patients, such as

breast cancer, gastric cancer, and prostate cancer (Col

et al. 2012; Decensi et al. 2010; Tseng 2016). The

survival rate was significantly improved for patients

with pancreatic cancer who were treated with met-

formin (Li et al. 2017).

Although the therapeutic effect of metformin is

well known for diabetes, there is evidence that long-

term use of metformin may cause vitamin B12

deficiency in T2D patients and cause lactic acid

accumulation in mice and humans (Aroda et al. 2016;

Langan and Goodbred 2017; Marathe et al. 2017). In

addition, the side effects of metformin also include

irritation of the gastrointestinal tract, including diar-

rhea, nausea, flatulence, dyspepsia, vomiting, and

abdominal discomfort, but in most cases, these

symptoms are not obvious (McCreight et al. 2018).

Stynen et al. (2018) reported that there are 745

proteins that are regulated by metformin treatment

(Stynen et al. 2018). There is still uncertainty about

whether these proteins demonstrate beneficial or

potentially detrimental off-target effects when met-

formin is taken across the lifespan. Therefore, before

providing metformin as a targeted aging drug, further

research is needed to determine its broader effects, the

molecular mechanism of action, and its safety

implications.

Rapamycin

Rapamycin is a macrolide produced by Streptomyces

hygroscopicus and was initially discovered as an

antifungal agent. Recent studies have found that

rapamycin can inhibit the mechanistic target of

rapamycin (mTOR) protein kinase and extend the

average lifespan of yeast, C. elegans, and fruit flies,

but the role in mammals needs to be explored further

(Johnson et al. 2013). Several other studies have

shown that rapamycin could effectively extend the

average and maximum lifespans of mice, such as

C57BL/6, 129/SV, and UM-HET3 mice (Harrison

et al. 2009; Anisimov et al. 2011; Chen et al. 2009;

Neff et al. 2013). In addition, rapamycin has been

found to inhibit tumorigenesis and extend the lifespan

of many genetic early-onset models, such as p53

mutant mice, Apc mutant animals, Rb mutant mice,

and HER-2/neu transgenic mice (Anisimov et al.

2010; Comas et al. 2012; Hasty et al. 2014). In

addition, studies have found that rapamycin also has a

neuroprotective effect. Oral rapamycin treatment

could effectively improve cognitive function in

elderly mice (Neff et al. 2013), reduce the pathological

features of AD, and maintain the integrity of the

blood-brain barrier by preventing neuronal loss and

improving cognitive function (Carosi and Sargeant

2019). In addition to exhibiting excellent anti-aging

effects in animal models, rapamycin has also shown

unexpected results in clinical trials. A recent meta-

analysis showed that rapamycin has a positive effect

on tuberous sclerosis – a rare multisystem disease with

the formation of benign tumors and neurological

disorders (Sasongko et al. 2016). A clinical trial

conducted by Chung et al. showed that topical

treatment with rapamycin significantly increased

p16INKA4A and collagen IV protein levels and

improved the histological appearance of the subjects’

skin tissues, which suggests that rapamycin can be

used to some extent as an anti-aging therapy in human

beings (Chung et al. 2019). The mechanisms of the

effects of rapamycin on lifespan are shown in Fig. 2.

As an FDA-approved drug, rapamycin has been

used in humans as a post-transplant immunosuppres-

sant and for the treatment of renal cell carcinoma,

coronary artery stent coating, lymphovascular smooth

muscle tumor, and autoimmune diseases (McCormack

et al. 2011). However, various and serious negative

effects limit its use. As a typical mTOR inhibitor,
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rapamycin acutely inhibits mTORC1, which could

promote longevity partially through the inhibition of

S6K1, protein translation, and increased autophagy.

Conversely, a long-term overdose of rapamycin will

inhibit the expression of mTORC2, which can result in

metabolic dysfunction and a decrease in the lifespan of

male mice through an as yet undetermined mechanism

(Arriola Apelo and Lamming 2016). Therefore,

Fig. 2 Rapamycin regulates lifespan primarily through the

mTOR signaling pathway. mTOR exists mainly in two

functionally distinct complexes termed mTORC1 and

mTORC2. Rapamycin inhibits mTORC1 on an intermittent

basis, while long-term administration also inhibits mTORC2 in

most tissues. Inhibition of mTORC1 promotes protein and

nucleotide synthesis as well as autophagy responses, while also

reducing cellular stress responses. These effects of rapamycin

may promote longevity. In contrast, inhibition of mTORC2

leads to metabolic dysfunction and reduced lifespan, but the

exact mechanism is unclear
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further experiments are needed to determine the

beneficial effects of rapamycin on mTORC1 inhibi-

tion-mediated aging and age-related diseases while

minimizing the side effects associated with mTORC2.

Resveratrol

Resveratrol (3,5,40-trihydroxystilbene) is a phy-

toalexin found in many plant species, such as grapes,

peanuts, and berries, which could respond to mechan-

ical injury, fungal infection, and UV radiation (Silva

et al. 2019). Resveratrol mainly promotes health and

lifespan in yeast and C. elegans by activating the

sirtuin family (Cao et al. 2018; Howitz et al. 2003;

Price et al. 2012; Wood et al. 2004). Resveratrol can

promote the viability and proliferation of human

umbilical cord mesenchymal stem cells (hUC-MSCs)

in a dose-response manner, mitigating senescence and

inducing the expression of SIRT1, while inhibiting the

expression of p53 and p16 (Wang et al. 2016).

Although resveratrol has not been reported to extend

the lifespan of wild-type mammals, studies have

shown that resveratrol supplementation can extend the

lifespan of mammals with impaired metabolism.

Resveratrol can reverse the physiological indicators

of mice on a high-calorie diet to reduce the risk of

death by about 31% (Baur et al. 2006; Gocmez et al.

2016) suggested that resveratrol was effective in

preventing a cognitive deficit in AD rats by inhibiting

the production of inflammatory cytokines (Gocmez

et al. 2016). Resveratrol combined with hUC-MSCs

transplantation could improve the learning and mem-

ory functions of AD mice and enhance neurogenesis

(Wang et al. 2018). In addition, resveratrol can pass

through the blood-brain barrier and act on the brain of

elderly patients with AD, prevent amyloid deposition,

and reduce the formation of plaque (Sawda et al. 2017)

Zhang et al. (2018) showed that resveratrol alleviated

motor and cognitive deficits in PD model mice in a

dose-dependent manner (Zhang et al. 2018). Emerging

studies have shown that resveratrol can significantly

reduce overall tumor development by promoting

apoptosis, regulating the cell cycle, and inhibiting

Cyclooxygenase (COX) activity and prostaglandin

production (Kalra et al. 2008). Resveratrol has also

been found to mediate the protective effects against

inflammatory diseases and cardiovascular diseases

through various mechanisms (Park et al. 2012; Tsai

et al. 2014; Xia et al. 2017; Zhu et al. 2018). The

mechanisms of the effects of resveratrol on lifespan

are shown in Fig. 3.

Resveratrol has shown great promise in multiple

animal models. However, its role in human clinical

trials is still controversial. A 26-week intervention trial

performed with 23 overweight elderly patients con-

cluded that resveratrol supplementation might

improve glucose metabolism, hippocampal functional

connectivity, and memory function (Witte et al. 2014).

But a recent meta-analysis showed the opposite result.

A follow-up study on 225 patients showed that

resveratrol did not have a positive effect on memory

and cognition (Farzaei et al. 2018). In addition,

Gliemann et al. (2013) showed that resveratrol

supplementation reduced the positive effect of exer-

cise training on blood pressure, blood cholesterol, and

maximal oxygen uptake but did not affect the retar-

dation of atherosclerosis (Gliemann et al. 2013). This

phenomenon implies trying not to consume foods

containing resveratrol during exercise. Resveratrol has

been tolerated in animal experiments, but when

administered in high doses, resveratrol may cause

serious side effects such as diarrhea and local allergies

(la Porte et al. 2010; Popat et al. 2013). In addition,

resveratrol has a low bioavailability, which may limit

its clinical application. A further challenge is that

resveratrol is difficult to use in large-scale clinical

trials at this stage.

Senolytics

Senolytics, drugs that selectively clear senescent cells,

have been developed recently and may be a novel

strategy for extending the healthspan and lifespan.

Senescent cells increase several anti-apoptotic regu-

lators, including dependence receptors, PI3K/Akt and

BCL-2, which can jointly regulate the ability of cells

to resist apoptosis (Zhu et al. 2015). Dasatinib (D) and

quercetin (Q) could induce apoptosis in senescent fat

progenitor cells and alleviate several aging-related

phenotypes in premature aging and natural aging mice

induced by injury (Zhu et al. 2015). Navitoclax, a

BCL-2 family inhibitor, could reduce the viability of

senescent human umbilical vein epithelial cells

(HUVEC) and IMR90, but it has no effects on human

primary preadipocytes (Zhu et al. 2016). Other

senolytics, such as ABT-737, A1331852 and

A1155463 can also inhibit BCL-2 (Zhu et al. 2017)

and clear senescent cells. Navitoclax could remove
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Fig. 3 Resveratrol is involved in anti-aging as an activator of

the sirtuin family and the Nrf2 pathway. Inhibition of

mitochondrial ATP production by resveratrol leads to activation

of AMPK, which enhances NAD ? availability thereby over-

coming the rate limitation imposed by this cofactor on SIRT1

enzyme activity. In turn, resveratrol directly activates SIRT1

thereby positively controlling AMPK activity. Together, AMPK

and SIRT1 form a positive feedback pathway to prolong life by

modulating multiple downstream factors. In addition, resvera-

trol can act directly on transcriptional regulators thus acting as

an anti-inflammatory and antioxidant effect
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SASP-targeted senescent cells (SNC) during the

formation of atherosclerosis (Childs et al. 2016) and

prevent hematopoietic SNC from rejuvenating (Chang

et al. 2016). ATB263 clears a series of senescent

cancer cells and eliminates chemotherapy-induced

senescent cells, reducing cancer relapse andmetastasis

in mouse models (Demaria et al. 2017; Wang et al.

2017). Senolytic (D ? Q) treatment reduced the

abundance of senescent cells in the brains of obese

mice, restored neurogenesis, and reduced neuropsy-

chiatric dysfunction (Musi et al. 2018; Ogrodnik et al.

2019; Zhang et al. 2019). In addition, senolytics may

be effective for a variety of age-related diseases, such

as idiopathic pulmonary fibrosis, sarcopenia,

osteoarthritis, and glomerulosclerosis (Kim and Kim

2019). As research has progressed, senolytics have

also shown promising results in clinical trials. Cox

et al. (2015) conducted acute and chronic interventions

using curcumin to treat elderly patients respectively

and showed that both treatment regimens significantly

improved their learning and memory abilities (Cox

et al. 2015). Justice et al. (2019) found that senolytics

(D ? Q) significantly improved the clinical perfor-

mance of 14 patients with idiopathic pulmonary

fibrosis (IPF) (Justice et al. 2019). It can also

effectively eliminate p16 INK4a-positive cells, reduce

SA-b-gal activity, and decrease the release of inflam-

matory factors in diabetic nephropathy (Hickson et al.

2019; Rossman et al. 2018).

Although senolytic therapy exhibits exciting anti-

aging effects, the current understanding of senolytics

has its own limitations. Navitoclax has been reported

to cause severe thrombocytopenia and neutropenia,

and these side effects limit its application (Niedern-

hofer and Robbins 2018). Another potential problem is

tissue atrophy, which is caused by senescent cells

being largely eliminated. In addition, senolytics elim-

inate not only the harmful effects of senescent cells but

also their beneficial effects. Although cellular senes-

cence is the cause of aging and aging-related diseases,

senescent cells can also play a positive role. For

example, senescence is an effective barrier against

tumorigenesis in the early stages of cancer (Calcinotto

et al. 2019). Therefore, the dual biological function of

senolytics must be evaluated. Furthermore, it is

necessary to advance the current version of senolytics

by improving its targeting capability and selectively

inhibiting its harmful effects on cells and tissues.

Precise clinical trials of senolytics therapy have not yet

been performed. More translational studies should

also be considered.

Caloric restriction

Recently, progressively more research has recom-

mended caloric restriction (CR) to reduce obesity-

induced aging-related diseases (Salvestrini et al.

2019). The aim of CR is to reduce calorie intake

without malnutrition and to improve the viability of

organisms (Broskey et al. 2019). An accumulating

number of studies have reported that CR has a positive

effect on DNA repair and telomere mechanisms. The

incidence of tumors in TERT transgenic (TgTERT)

mice was significantly reduced with CR, which also

prolonged their lifespan compared to wild-type (WT)

controls under the same diet (Vera et al. 2013).

Reducing calorie intake can increase metabolic effi-

ciency and prevent cell damage (Picca et al. 2017). It

can also extend the lifespan of rodents and humans by

reducing insulin, glucose, and the IGF-1 signaling

pathway (Hwangbo et al. 2020; Pifferi and Aujard

2019a). In mammals, it is clear that CR induces the

expression and activity of sirtuins in many tissues,

which are closely related to aging (Imai and Guarente

2010). The positive effects of CR on inflammation and

insulin resistance have been demonstrated in a rat

model of age-associated inflammation by regulating

GSH redox status and NF-jB, SIRT1, and FoxOs

(Chung et al. 2011; Horrillo et al. 2011). Important

improvements were shown in the onset and develop-

ment of CVD and diabetes. The incidence of CVD is

reduced with CR by controlling the mechanisms of

maintaining cardiac activity, such as autophagy,

proteasome-mediated turnover, apoptosis, and mito-

chondrial quality, to control its effects during aging

(Rattan 2014). PGC-1a expression and mitochondrial

biogenesis stimulated by AMPK and SIRT1 in muscle

have been associated with the reduction of insulin

resistance, and the use of CR or CRmimickers, such as

resveratrol or metformin, contribute to preventing the

onset and the progression of the diseases (Gerhart-

Hines et al. 2007). Human clinical trials have also

demonstrated positive effects of CR (Lorenzini 2014).

A survey byMost et al. (2018) showed that continuous

CR in healthy, nonobese individuals could reduce the

incidence of cardiovascular disease by 30% (Most

et al. 2018). Redman and Simin found that long-term

CR without malnutrition could enhance the efficiency
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of resting energy expenditure, thereby reducing

oxidative damage to tissues and organs (Redman

et al. 2018), and inducing significant suppression of

inflammation, as shown by a two-year CR dietary

intervention (Meydani et al. 2016).

Despite the positive effects of moderate CR on

human aging, some of the possible negative effects of

CR should also be considered. As people get older,

physiological reserves diminish, leading to reduced

resistance to various stressors. In the case of malnu-

trition, these adverse factors can be magnified-a

problem that faces many older people. Therefore,

CR should not be used as a potential intervention for

treating diseases in this specific population (Pifferi and

Aujard 2019b). Also, people with a low body mass

index (BMI, less than 21 kg/m2) should also be

cautious of utilizing CR, as this could lead to rapid

weight loss and thus increase the risk of further health

problems (Le Bourg and Redman 2018). In addition, a

study by McGrath et al. found that exercise could

cause bone loss and appeared to be harmful to the

bones of mice in the CR group compared to the control

Fig. 4 Senolytic therapies target aging. During the aging

process, senescent cells accumulate in large amounts in tissues

and are associated with the development of various age-related

diseases. Senolytics can help slow down the aging process by

eliminating the accumulation of senescent cells, reducing age-

related diseases and prolonging healthspan. Uncontrolled

activation of SASP can cause chronic inflammation, leading to

tissue dysfunction, this ultimately leads to aging and age-related

diseases. Senolytics also can positively impact aging-related

diseases by modulating the regulatory network of SASP in

senescent cells and by inhibiting SASP from exerting its

deleterious effects
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group (McGrath et al. 2020). Clinical studies have also

found that CR could decrease bone mineral density as

well as increase the risk of osteoporotic fractures

compared to a control group (Villareal et al. 2016).

Therefore, before engaging in CR as a therapy to slow

down the aging process, many factors, such as the

patient’s physical condition, mental state, and BMI,

should be taken into consideration. Blindly engaging

in dieting or CR should not be promoted (Fig. 4).

Conclusions

Medicine has undergone a gradual shift in its under-

lying concept, from ‘‘sick care’’ to ‘‘health care’’.That

is to say, medicine is moving away from focusing on

treatments after the occurrence of a disease towards

intervening before the recognized risk factors progress

to disease onset. Defining the hallmarks of aging helps

to establish a framework of aging-related mechanisms

and thus provides theoretical support for improving

human health and extending the lifespan. Due to the

continuously growing trend of an aging population,

the anti-aging strategy is undoubtedly an increasingly

important area for the pharmaceutical industry and

public health organizations. However, considering the

limitations and side effects of anti-aging drugs, there

are presently too many concerns that need further

clarification. Therefore, collaborative efforts from

multidisciplinary researchers are required to advance

these potential treatment strategies.
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