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1 The Shor code

In this subsection we will describe the construction of the Shor code. In order
to proceed further, we must construct first the three qubit bit flip code and
after, the three qubit phase flip code. For more details about the encoding-
decoding process we refer the reader to [15].

1.1 Three qubit bit flip code

The bit flip channel is defined below. Roughly speaking, this channel repre-
sents the action of the Pauli operator X

X ≡
[

0 1
1 0

]
.

Let us define formally such a quantum noise.

Definition 1.1 Let |v〉 = a|0〉 + b|1〉 be a qubit state (qubit for short). The
bit flip channel acts on |v〉 as follows:

• |v〉 channel−−−−→ X|v〉 = a|1〉+ b|0〉 with probability p;
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• |v〉 channel−−−−→ |v〉 with probability 1− p.

In order to protect qubits against the effects of the bit flip channel, one
utilizes the three qubit bit flip code. We begin by recalling that we write
|v1v2v3〉 to denote |v1〉 ⊗ |v2〉 ⊗ |v3〉, as previously specified.

Let us consider a single qubit given by |v〉 = a|0〉 + b|1〉. Assume that
|v〉 was encoded as |v〉enc = a|000〉 + b|111〉, where as it is usual, we define
|000〉 as being the logical zero |0L〉 and |111〉 as the logical one |1L〉, i.e.,

|0L〉 := |000〉 and |1L〉 := |111〉. To this end, we have encoded |0〉 encode−−−→ |000〉
and |1〉 encode−−−→ |111〉.

The channel is assumed to be independent, that is, each qubit passes
through an independent copy of it. Assume that one error (or none) has
occurred to the encoded state |v〉enc. For this channel one has four error
syndromes corresponding to the four projection operators

First Procedure of measurement

To detect the error (if there exists), we perform a measurement in order
to know which qubit was corrupted. The result of the measurement is said
to be error syndrome. There exist four error syndromes corresponding to the
following four projection operators:

• P0 := |000〉〈000|+ |111〉〈111| (associated with no occurrence of error);

• P1 := |100〉〈100|+ |011〉〈011| (error in the first qubit);

• P2 := |010〉〈010|+ |101〉〈101| (error in the second qubit);

• P3 := |001〉〈001|+ |110〉〈110| (error in the third qubit);

Let us see how the detection process works. Assume without loss of
generality (w.l.o.g.) that an error corrupted the second qubit; then the state

|v〉enc = a|000〉+ b|111〉

becomes
|w〉 = a|010〉+ b|101〉.

Applying P2 to |w〉 we have

p(2) = 〈w|P2|w〉
= (a∗〈010|+ b∗〈101|)|010〉〈010|(a|010〉+ b|101〉)
+ (a∗〈010|+ b∗〈101|)|101〉〈101|(a|010〉+ b|101〉)
= |a|2 + |b|2 = 1.

Therefore, we know that the error occurred in the second qubit.
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Remark 1.1 In this detection process, it is interesting to observe that the
corrupted state a|010〉+ b|101〉 is not affected by the syndrome measurement.
In fact, the syndrome contains only information about the corrupted qubit,
but no information about the state being measured (a and b are not known).
This is excellent, since none of the measurements applied for the decoding
operation destroys the superpositions of quantum states that must be preserved
by applying the encoding process.

To recover the original encoded state |v〉enc, note that since the error
has occurred in the second qubit and since the channel flips the qubit, then
it suffices to flip to second qubit again. Thus, the encoded state |v〉enc is
recovered. It is clear that this procedure holds in general, independently in
which qubit the error has occurred. If no error occurs in this process, by
applying the operator P0 we have p(0) = 〈w|P0|w〉 = 1, that is, we know
that (probability one) that no error has occurred. Proceeding similarly, we
can recover the original encoded state in all cases.

Second Procedure of measurement

We next present an alternative way to proceed the measurement process.
Assume that we replace the four measurements operators P0, P1, P2, P3 by
the observables Z1Z2 := Z ⊗ Z ⊗ I and Z2Z3 := I ⊗ Z ⊗ Z, both with
eigenvalues −1 and +1. To perform the measurement, we first apply Z1Z2

and, in the sequence, the observable Z2Z3.
The first operator has the following spectral decomposition

Z1Z2 = [(|00〉〈00|+ |11〉〈11|)⊗ I]− [(|01〉〈01|+ |10〉〈10|)⊗ I]

There are two possibilities for the result of the measurement of Z1Z2 :
the eigenvalue is +1 or −1. Let us analyze all the situations.

Recall that the original encoded vector is |v〉enc = a|000〉 + b|111〉. If
the channel corrupted the first qubit, then the corresponding qubit state is
|w〉 = a|100〉+b|011〉, so the result of the measurement of Z1Z2 is −1 because

p(−1)

= 〈w|Z1Z2|w〉
= (a∗〈100|+ b∗〈011|)− [(|01〉〈01|+ |10〉〈10|)⊗ I](a|100〉+ b|011〉)
= (−[b∗〈1|+ a∗〈0|],−[a|0〉+ b|1〉])
= |a|2 + |b|2 = 1.

Analogously, if the channel corrupted the second qubit, the result of the
measurement of Z1Z2 is also −1. Thus, if the eigenvalue equals −1, the first
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and the second qubit are distinct. If the eigenvalue is +1 then such qubits
are equal. Analogously, when performing the measurement of the observable
Z2Z3, if the eigenvalue is +1, then the second and the third qubit are equal;
if it is −1, they are distinct.

We are now deduce in which (if any) qubit the error has occurred. Assume
that the result of the measurements of Z1Z2 and Z2Z3 are both +1. Then all
the three qubits are equal and no error has occurred. If the eigenvalues are
+1 and −1, respectively, then the error corrupted with high probability the
third qubit; if the eigenvalues are −1 and +1, respectively, the error occurred
with high probability in the first qubit. Finally, if the results are −1 and −1
then (with high probability) the second qubit was corrupted. Note that none
of the measurements give information about the states being measured like
the first procedure. To recover the quantum state it suffices to proceed as in
the first case, i.e., the corrupted qubit can be flipped again.

It is interesting to note that, in the latter procedure, we only need to use
two observables to detect the error, whereas in the first case we need to have
four operators of measurement. This is an advantage offered the the second
procedure.

1.2 Three qubit phase flip code

The phase flip channel represents the action of the Pauli operator Z

Z ≡
[

1 0
0 −1

]
.

This quantum noise shown is defined in the sequence.

Definition 1.2 Let |v〉 = a|0〉 + b|1〉 be a qubit. The phase flip channel acts
on |v〉 as follows:

• |v〉 channel−−−−→ Z|v〉 = a|0〉 − b|1〉 with probability p;

• |v〉 channel−−−−→ |v〉 with probability 1− p.

The procedure to recover the encoded state is to turn the phase flip
channel into a bit flip channel. In order to do this, let us consider the qubit
basis |+〉 = (|0〉 + |1〉)/2 and |−〉 = (|0〉 − |1〉)/2. Since Z|+〉 = |−〉 and
Z|−〉 = |+〉, Z acts as a bit flip in such vectors. We then perform the
encoding:

|0〉 encode−−−→ |0L〉 := |+ ++〉
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and
|1〉 encode−−−→ |1L〉 := | − −−〉

to perform the encoding state. In this manner we can protect at least one
qubit against phase flip errors. From this moment, the encoding, detection
and the recovery process is the same as the bit flip channel with respect to
the basis |+〉 and |−〉.

1.3 The Shor code

Here we present the Shor code, the first quantum error-correcting code to
protect an arbitrary single qubit against an arbitrary quantum error. The
code is constructed by means of concatenation of qubits as we can see in the
following.

The construction of this code is based on the three qubit bit flip and the
three qubit phase flip codes presented in Subsections 1.1 and 1.2, respectively.

The stages of construction of the Shor code is given in the sequence.

(1) The first stage is to utilize the three qubit phase flip code to encode

the qubit, that is, |0〉 encode−−−→ |+ ++〉 and |1〉 encode−−−→ | − −−〉.

(2) Each of these qubits (namely, |+〉 and |−〉) are encoded by applying

the three qubit phase flip code, i.e., |+〉 encode−−−→ (|000〉+ |111〉)/
√

2 and

|−〉 encode−−−→ (|000〉 − |111〉)/
√

2.

Thus, the resulting code is the Shor code given by

|0〉 encode−−−→ |0L〉 :=
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2

and

|1〉 encode−−−→ |1L〉 :=
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
.

We will explain now how the Shor code can correct phase flip and bit
flip errors on any single qubit. In fact, the analyze we will perform here is
in the same spirit with as the Second Procedure of measurement shown in
Subsection 1.

We present a scheme in order to clarify the understanding of how the
code can recover the initial state.
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First Case - Correcting bit flip errors Assume w.l.o.g. that an error
has occurred in the seventh qubit. We then perform the measurement of
the observable Z7Z8, finding the eigenvalue −1. After this, we follow by
measuring Z8Z9 obtaining therefore the eigenvalue +1; so the seventh qubit
is the corrupted one. Applying bit flip again in the seventh qubit one has
the initial state. Proceeding similarly, we can detect and recover any (single)
state which was corrupted by bit flip errors, by means of the measurement
of the observables Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8 and Z8Z9.

Second Case - Correcting phase flip errors Assume that an error
occurs in the second qubit for example. Due to the properties of tensor
product, the first block of three qubits |000〉 + |111〉 becomes |000〉 − |111〉
and |000〉− |111〉 becomes |000〉+ |111〉. In other words, the two basis states
now read as

|0L〉
channel−−−−→ (|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2

and

|1L〉
channel−−−−→ (|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
.

After this, we compare the sign of the first and the second blocks of
qubits, i.e., |000〉|111〉 is compared with |000〉+ |111〉 (has distinct sign) and
|000〉 + |111〉 is compared with |000〉 − |111〉 (has distinct sign). Here, we
consider that the block has the same sign in the cases (|000〉+ |111〉)(|000〉+
|111〉) and (|000〉 − |111〉)(|000〉 − |111〉) and they have different signs in
the cases (|000〉 + |111〉)(|000〉 − |111〉) and (|000〉 − |111〉)(|000〉 + |111〉).
Next, we perform a comparison between the sign of the second and the third
blocks of qubits, i.e. (|000〉 + |111〉)(|000〉 + |111〉) (has the same sign) and
(|000〉 − |111〉)(|000〉 − |111〉) (has the same sign). Thus, we know that the
phase flip has corrupted one of the three first qubits. To recover the initial
encoded state it suffices to flip the sign of the first block of three qubits.

Such procedure to detect phase flip errors presented above is similar to
perform the measurement of the observables X1X2X3X4X5X6 and X4X5X6

X7X8X9.

Third Case - Phase flip and bit flip on the same qubit This case is
a direct application of the previous ones. More precisely, it suffices to apply
the procedure shown in the First Case to recover the qubit affected by the
bit flip action of the channel after applying the Second Case to correct the
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phase flip error occurred. These facts are true because both error-correction
process are independent.

Therefore, the stabilizer for the Shors nine qubit code is

• Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

• I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

• I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I

• I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I

• I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I

• I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z

• X ⊗X ⊗X ⊗X ⊗X ⊗X ⊗ I ⊗ I ⊗ I

• I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X ⊗X ⊗X

The Shor code has parameters [[9, 1, 3]], that is, the code utilizes nine qubits
to encode a qubit, and it is capable of correcting one arbitrary quantum
error.

Until now we have seen only errors of the types phase and bit flip. But
the question is: Is the Shor code capable of correcting an arbitrary error?
The answer for this question is yes!

To see this, note that the Pauli matrices I,X, Y, Z span M2(C), the vector
space of the matrices of order 2 with complex entries. Since XZ = −iY then
the matrices I,X, Z,XZ also span M2(C). Thus, given an error matrix E
in one qubit we can write E = a1I + a2X + a3Z + a4XZ, where ai ∈ C
for all i = 1, 2, 3, 4. Therefore, if |v〉 is a qubit, we have the quantum state
E|v〉 = a1|v〉+ a2X|v〉+ a3Z|v〉+ a4XZ|v〉.

By the measurement of the error syndrome the state E|v〉 collapses to one
of the states |v〉, X|v〉, Z|v〉 or XZ|v〉. Since these operators are invertible, we
then apply the inverse operator to recover the initial quantum state. In other
words, if the code is capable of correcting errors of the type bit flip, phase
flip and bit-phase flip combined, in a given qubit then the code is capable of
correcting all arbitrary errors in such a qubit. This is an interesting feature of
quantum codes: if the code C corrects a suitable discrete subset of errors then
C corrects all type of (continuum) errors. This fact is essential in quantum
error-correction; based on this property, it is possible to construct efficient
quantum codes against arbitrary quantum errors.
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Theorem 1.1 (Quantum error-correction conditions) Let C be a quantum
code, and let P be the projector onto C. Suppose E is a quantum opera-
tion with operation elements {Ei}. A necessary and sufficient condition for
the existence of an error-correction operation R correcting E on C is that

PE†iEjP = αijP

for some Hermitian matrix α of complex numbers. We call the operation
elements {Ei} for the noise E errors, and if such an R exists we say that
{Ei} constitutes a correctable set of errors for the code.

This previous discussion can be summarized in the next result.

Theorem 1.2 (Error Discretization) Suppose C is a quantum code and R is
the error-correction operation constructed from Theorem 1.1 to recover from
a noise process E with operation elements {Ei}. Suppose F is a quantum
operation with operation elements {Fj} which are linear combinations of the

Ei, that is, Fj =
∑
i

mjiEi for some matrix mji of complex numbers. Then

the error-correction operation R also corrects for the effects of the noise
process F on the code C.

In other words, it is possible to discretize quantum errors, that to fight
the continuum of errors possible on a single qubit it is sufficient merely to
win the war against a finite set of errors, the four Pauli matrices.

2 Binary Stabilizer Formalism

There exist some matrices that play a fundamental role in quantum mechan-
ics, namely, the Pauli matrices

I ≡
[

1 0
0 1

]
, X ≡

[
0 1
1 0

]
,

Y ≡
[

0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Let us consider the Pauli matrices {I,X, Y, Z}. Then the set G1 =
{±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} endowed with the operation of ma-
trix multiplication is a group.
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Definition 2.1 The Pauli group on 1 qubit is defined by the group (G1, ·m),
where ·m is the product of matrices.

More generally, we can define the general Pauli group on n qubits.

Definition 2.2 The general Pauli group on n qubits, denoted by Gn, is the
group (Gn, ·m), such that the elements of Gn are n-tensor products of Pauli
matrices with coefficients ±1 or ±i.

Suppose S is a subgroup of Gn and define VS to be the set of n-qubit
states which are fixed by every element of S. Then VS is the vector space
stabilized by S, and S is said to be the stabilizer of the space VS, since every
element of VS is stable under the action of elements in S.

Theorem 2.1 VS is non-trivial if and only if

(a) the elements of S commute;

(b) −I is not an element of S.

Definition 2.3 We say that the generators g1, . . . , gl of a group are indepen-
dent in the sense that removing any generator gi makes the group generated
smaller, i.e., 〈g1, . . . , gi−1, gi+1, . . . , gl〉 $ 〈g1, . . . , gl〉.

Proposition 2.1 Let S = 〈g1, . . . , gn−k〉 be generated by n − k independent
and commuting elements from Gn, and such that −I does not belong to S.
Then VS is a 2k-dimensional vector space.

2.1 Steane’s code

The Steane’s [[7, 1, 3]] seven qubit code is an example of the application of
the Calderb-ank-Shor-Steane (CSS) quantum code construction that will be
presented in the next section.

The basis states for this code are given in the sequence:

|0L〉 :=
1√
8

[|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉]

and

|1L〉 :=
1√
8

[|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉]

The stabilizer for the seven qubit code due to Steane is
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• I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X

• I ⊗X ⊗X ⊗ I ⊗ I ⊗X ⊗X

• X ⊗ I ⊗X ⊗ I ⊗X ⊗ I ⊗X

• I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ Z ⊗ Z

• I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ Z ⊗ Z

• Z ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ I ⊗ Z

The code has parameters [[7, 1, 3]], that is, it can correct an arbitrary error in
a single qubit and utilizes seven quibits in the encoding process. The classical
self-orthogonal code utilized in the encoding process is the [7, 4, 3] Hamming
code with parity check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
3 Binary CSS construction

The Calderbank-Shor-Steane (CSS) code construction is one of the most
interesting code constructions shown in the literature [15]. In fact, it is the
first construction method exhibited in the literature in the sense that one can
derive families of quantum codes by applying the CSS construction, and not
only few codes with specific parameters. Such a method utilizes two classical
linear nested codes (or one Euclidean self-orthogonal linear code) to address
to problem of correcting phase and qubit flip errors. The CSS codes form a
subclass of the class of the stabilizer codes [15]. We next presented a detailed
construction of these codes.

The process starts with two binary linear codes C1 and C2 with param-
eters [n, k1, d1] and [n, k2, d2], respectively, such that C2 ⊂ C1 and both C1

and C⊥2 correct t errors. Based on these classical codes we define a quantum
code CSS(C1, C2) (this notation is not usual in the literature but we prefer
adopt it here to maintain the notation of the textbook [15]) as follows.

Assume that c, cp ∈ C1 are two codewords of C1. Define the following
relation on C1: c ≈ cp ⇐⇒ c−cp ∈ C2. It is easy to see that≈ is an equivalence
relation on C1. Moreover, it is not difficult to see that the equivalence class
c determined by a codeword c ∈ C1 is equal to c = c+C2 := {c+ x|x ∈ C2}.
Thus, the cosets c + C2 form a partition of C1. Since we are working with
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quantum states (qubits or tensor product of qubits) then we must adapt the
notation. We then define the quantum state |c+C2〉 (already normalized) as

|c+ C2〉 :=
1√
|C2|

∑
x∈C2

|c+ x〉,

where + denotes the componentwise addition modulo 2.
Suppose c and cp belong the disjoint cosets of C2; this implies that there

is no x, xp ∈ C2 such that c+ x = cp + xp otherwise

c− cp = xp − x ∈ C2 =⇒ c+ C2 = cp + C2,

which is a contradiction. Hence, for distinct c 6= cp, the corresponding quan-
tum states |c + C2〉 and |cp + C2〉 are orthonormal. Thus, we define the
quantum code CSS(C1, C2) to be the vector space spanned by the states

|c + C2〉 for all c ∈ C1. Since the number of cosets is |C1|
|C2| , the dimension of

CSS(C1, C2) equals |C1|
|C2| = 2k1−k2 . Therefore, the quantum code CSS(C1, C2)

has parameters [n, k1 − k2], capable to correct errors on t qubits.
Let us see how the code works to the error correction. Assume that

the initial state of a quantum system is |c + C2〉. After passing through the
channel, the original state can suffer some kind of error (bit flip and/or phase
flip). In the error model it is assumed that bit flip errors eb are binary vectors
of length n (the code length) such that the component is 1 where the bit flip
occurs and 0 otherwise. The error of the type phase flip are also binary
vectors ep of length n with 1 in the coordinate that a phase flip occurs and
0 otherwise. Note that both binary vectors cannot have more than t ones.
Adopting this model we know that the corrupted state is

|c+ C2〉
channel−−−−→ 1√

|C2|

∑
x∈C2

(−1)(c+x)·ep|c+ x+ eb〉,

Bit flip Detection. We introduce a sufficient large ancilla system ca-
pable of storing the syndrome for C1 which is initially in the all zero state
|0〉. Applying the parity check matrix H1 of C1 to all state |c+ x+ eb〉, since
H1(c+ x) = 0 we have

|c+ x+ eb〉|0〉 −→ |c+ x+ eb〉|H1(c+ x+ eb)〉 = |c+ x+ eb〉|H1eb〉,

that is, the error was isolated. Thus, we obtain the state

1√
|C2|

∑
x∈C2

(−1)(c+x)·ep |c+ x+ eb〉|H1eb〉.
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Performing the measurement of the ancilla, we obtain H1eb; discarding the
ancilla we return to the quantum state

1√
|C2|

∑
x∈C2

(−1)(c+x)·ep|c+ x+ eb〉.

Since the classical syndrome H1e1 is known, then C1 tells us the vector error
eb. To recover the state, we apply the NOT gate in all the qubits corrupted
by the error, which leads to the state

1√
|C2|

∑
x∈C2

(−1)(c+x)·ep|c+ x〉.

Our next task is to detect the qubits corrupted by the phase flip error.

Phase flip Detection. Starting from the state

1√
|C2|

∑
x∈C2

(−1)(c+x)·ep|c+ x〉,

the Hadamard gate

H =
1√
2

[
1 1
1 −1

]
.

is applied to each qubit producing the state

1√
|C2|2n

∑
v∈Fn

2

∑
x∈C2

(−1)(c+x)·(ep+v)|v〉,

which can be written as

1√
|C2|2n

∑
w∈Fn

2

∑
x∈C2

(−1)(c+x)·w|w + ep〉,

where w = v+ep (notice that ep+ep is the zero vector). Let us now compute

the sum
∑
x∈C2

(−1)xw. If w ∈ C⊥2 then w · x = 0 for all x ∈ C2; so

∑
x∈C2

(−1)xw = 1 + 1 + . . .+ 1︸ ︷︷ ︸
|C2| times

= |C2|.

On the other hand, if w /∈ C⊥2 then it is easy to see that∑
x∈C2

(−1)xw = 0.
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Hence, the state can be written as

1√
2n/|C2|

∑
w∈C⊥

2

(−1)c·w|w + ep〉,

which is similar to a bit flip type of error. To correct it, we proceed anal-
ogously to the correction of eb, i.e., we introduce an ancilla and apply the
parity check matrix G2 for C⊥2 (which is a generator matrix for the code C2)
as done previously, to obtain G2ep and to correct the error ep the quantum
state

1√
2n/|C2|

∑
w∈C⊥

2

(−1)c·w|w〉,

Applying the Hadamard gate to each qubit results in the original state

|c+ C2〉 :=
1√
|C2|

∑
x∈C2

|c+ x〉.

Therefore, the resulting quantum code CSS(C1, C2) has parameters [[n, k1−
k2]] and can correct arbitrary errors up to t qubits.

In the following we present the CSS construction to qubits.

Lemma 3.1 [4, 9] Let C1 and C2 denote two classical binary linear codes
with parameters [n, k1, d1]2 and [n, k2, d2]2, respectively, such that C2 ⊂ C1.
Then there exists an [[n,K = k1 −k2, D]]2 CSS quantum code where D =
min{wt(c) : c ∈ (C1\C2) ∪ (C⊥2 \C⊥1 )}.

3.1 Nonbinary Stabilizer codes

It is interesting to note that until now we have dealt with quantum bits or
tensor product of quantum bits. Hence we can only construct quantum codes
for qubits. Because of this limitation, the authors have such a theory to con-
struct quantum codes for non-binary alphabets, i.e., quantum digits (qudits).
A giant step towards this generalization was the work by Calderbank et al.
[4] and after by Ketkat et al. [9]. In the latter paper, the authors general-
ized in several ways the formalism of stabilizers for binary and non-binary
alphabets by applying Galois theory.

Notation. We denote p a prime number, q a prime power, Fq is the finite
field with q elements, Cq is the complex vector space of dimension q (quantum
mechanical system scenario), |xi〉 are the vectors of an orthonormal basis of
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Cq, where xi range over all elements of Fq, and Cqn denotes the n-tensor
product Cqn = Cq ⊗ Cq ⊗ · · · ⊗ Cq.

Let us recall the concept of trace map.

Definition 3.1 The trace map trqm/q : Fqm −→ Fq is defined as

trqm/q(a) :=
m−1∑
i=0

aq
i

.

Definition 3.2 A quantum error-correcting code is a K-dimensional subspace
of Cqn = Cq ⊗ · · · ⊗ Cq︸ ︷︷ ︸

n times

.

We next present the error model utilized in quantum mechanics. The
error model is a natural generalization of Pauli matrices to non-binary al-
phabets, as we will see in the sequence.

Let q = pm be a prime power and assume that a and b are elements of
Fq. We then define two unitary operators:

X(a) : Cq −→ Cq

|xi〉 −→ X(a)|xi〉 = |xi + a〉

and

Z(b) : Cq −→ Cq

|xi〉 −→ Z(b)|xi〉 = ωtr(bxi)|xi〉,

where tr : Fpm −→ Fp is the trace map and ω = exp(2πi/p) is a primitive
pth root of unity.

Remark 3.1 Note that the definitions of operators X(a) and Z(b) are natural
generalizations of the Pauli matrices X and Z, respectively, to q-ary alpha-
bets. In fact, X(a) acts by changing the vectors of the orthonormal basis,
and Z(b) changes the phase of the vectors of the basis.

We can now define the set of error operators.
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Definition 3.3 Let X(a) and Z(b) defined as above. The set

ε = {X(a)Z(b)|a, b ∈ Fq}

is called the set of error operators.

In the sequence we define the concept of nice error basis.

Definition 3.4 Let β be a set of q2 unitary matrices. We say that β is a nice
error basis if β satisfies the following conditions:

(1) Iq ∈ β, where Iq is the identity matrix of order q;

(2) if A,B ∈ β then AB is a scalar multiple of another element of β;

(3) if A,B ∈ β, with A 6= B, then Tr(A†B) = 0, where Tr denotes the trace
of the matrix.

The set ε given in Definition 3.3 is a nice error basis.

Proposition 3.1 The set ε = {X(a)Z(b)|a, b ∈ Fq} satisfies the three condi-
tions of Definition 3.4, i.e., ε is a nice error basis on Cq.

Example 3.1 [9] Let us consider the finite field with four elements F4 = {0, 1,
α, α}. According to the notation adopted above, a basis for C4 can be written
as |0〉, |1〉, |α〉 and |α〉. Let

I2 =

[
1 0
0 1

]
, σX =

[
0 1
1 0

]
, and σZ =

[
1 0
0 −1

]
.

By a simple computation we have
X(0) = I2 ⊗ I2, X(1) = I2 ⊗ σX , X(α) = I2 ⊗ I2, X(α) = σX ⊗ σX ,
Z(0) = I2 ⊗ I2, Z(1) = σZ ⊗ I2, Z(α) = σZ ⊗ σZ , X(α) = I2 ⊗ σZ.

We must know how the errors act on multiple qudits. In other words, it
is necessary to know if the tensor products of a finite number of nice error
basis is also a nice error basis. Fortunately this is true.

Proposition 3.2 Let β1 and β2 be two sets of nice error bases on Cq. Then
the set

β = {E1 ⊗ E2|E1 ∈ β1, E2 ∈ β2}

is also a nice error basis.
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By applying induction, we know that Proposition 3.2 also holds for a
finite number of tensor products. Assuming that a = (a1, a2, . . . , an) is a
vector in Fnq , then we denote X (a) = X(a1) ⊗ X(a2) ⊗ · · · ⊗ X(an) and
Z(a) = Z(a1)⊗Z(a2)⊗ · · ·⊗Z(an) for tensor products of n error operators.

Corollary 3.1 Assume the notation above. Then the set

εn = {X (a)Z(b)|a, b ∈ Fnq }

is a nice error basis on the complex vector space Cqn.

Hence, we have a complete characterization (the model) of the errors that
can corrupt the quantum digits.

In the sequence we will define a stabilizer code. We start with the group
Gn generated by the matrices of εn:

Gn = {ωX (a)Z(b)|a,b ∈ Fnq , c ∈ Fp},

which is called error group associated with εn. A stabilizer code is the joint
eigenspace with eigenvalue 1 of some subgroup of Gn, as we see in the fol-
lowing.

Definition 3.5 Let S be a subgroup of the error group Gn. A stabilizer code
Q 6= {0} is a subspace of Cqn satisfying the equality

Q =
⋂
E∈S

{|v〉 ∈ Cqn : E|v〉 = |v〉}.

We need to define the weight of an element in the error group Gn. To
this end, let a,b be two vectors in Fnq and consider the vector (a|b) ∈ F2n

q .

Definition 3.6 The symplectic weight swt((a|b)) of (a|b) is the number of
nonzero ordered pairs of the form (ai, bi), where i = 1, 2, . . . , n, i.e.,

swt((a|b)) = |{i |(ai, bi) 6= (0, 0)}|.

Definition 3.7 Let E = ωcX (a)Z(b) be an element in the error group Gn.
Then the weight wt(E) of E is defined as wt(E) = swt((a|b)).

It is interesting to note that (ai, bi) 6= (0, 0) if and only if (X(ai), Z(bi)) 6=
(Iq, Iq). Thus, from Definition 3.7, the weight wt(E) of E can be interpreted
as the number of nonidentity tensor components, as expected.
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Definition 3.8 A quantum error-correcting code (QC) Q is a K-dimensional
subspace of Cqn. If Q has minimum distance d, then we say that Q is an
((n,K, d))q code. If K = qk we write [[n, k, d]]q. The length n, the dimension
K and minimum distance d are the parameters of Q. The code Q is said to
be pure to l if and only if its stabilizer group does not contain non-scalar ma-
trices of weight less than l; Q is pure if and only if it is pure to its minimum
distance.

Definition 3.9 We say that a quantum code Q has minimum weight d if it
can detect all errors in Gn of weight less than d, but it cannot detect some
error of weight d.

A QC with minimum distance d corrects all errors of weight b(d− 1)/2c
or less.

The center Z(Gn) of the group Gn is the subgroup given by

Z(Gn) = {E ∈ Gn|EF = FE, ∀ F ∈ Gn}.

In words, Z(Gn) consists of the elements in Gn that commute with all ele-
ments of Gn.

Let S be a subgroup of Gn. The centralizer CGn(S) of S in Gn is defined
as

CGn(S) = {E ∈ Gn|EF = FE, ∀ F ∈ S}.

Analogously, the elements of CGn(S) are the elements of Gn that commute
with all elements of S. Further, let us consider SZ(Gn) as the group gen-
erated by S and Z(Gn). The following result gives necessary and sufficient
conditions for error-detection.

Theorem 3.1 Let S be a subgroup of Gn such that S is the stabilizer group of
a stabilizer code Q of dimension greater than 1. A necessary and sufficient
condition in order to Q detects an error E ∈ Gn is either E ∈ SZ(Gn) or
E /∈ CGn(S).

Lemma 3.2 If Q is a nonzero subspace of Cqn, then its stabilizer S is an
abelian subgroup satisfying S ∩ Z(Gn) = {I}.

In the following we present the Calderbank-Shor-Steane (CSS) construc-
tion to non-binary alphabets, which is a particular case of stabilizer codes.
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Lemma 3.3 [4, 9] Let q be a prime power. Let C1 and C2 denote two classical
linear codes both over the field Fq, with parameters [n, k1, d1]q and [n, k2, d2]q,
respectively, such that C2 ⊂ C1. Then there exists an [[n,K = k1 −k2, D]]q
CSS quantum code where D = min{wt(c) : c ∈ (C1\C2) ∪ (C⊥2 \C⊥1 )}.

Remark 3.2 As it was said previously, the CSS codes shown in Lemma 3.3
are constructed over non-binary alphabets. In fact, the original version of the
CSS code construction (as we have presented in this subsection) was presented
in binary alphabets. For non-binary alphabets, a quantum state is called
quantum digits or qudits (for short).

There exist some well known bounds with respect to the parameters of a
quantum code.

Lemma 3.4 [9] Let C be an [[n, k, d]]q quantum code. Then the quantum
Singleton bound asserts that the parameters of C satisfy k + 2d ≤ n + 2. If
C attains the quantum Singleton bound, i.e., k+ 2d = n+ 2, then it is called
a quantum maximum distance separable (MDS) code.

More generally we have the following result to stabilizer codes.

Lemma 3.5 (Quantum Singleton bound)[9, Corollary 28] The parameters of
an ((n,K, d))q stabilizer code with K > 1 satisfy the inequality

K ≤ qn−2d+2.

4 Linear block codes

In this section we recall basic concepts on linear codes. For more details we
refer the reader to [8, 14]. Notation: p denotes a prime number, q is a prime
power and Fq is the finite field with q elements. In this subsection the vectors
are written in bold.

Definition 4.1 Assume that Fnq is the vector space (over Fq) of all n-tuples
in Fq. Then an (n,M) code C over Fq is a subset of Fnq of size M . If
c = (a1, a2, . . . , an) ∈ Fnq is such that c ∈ C, then the vector c is called
codeword of C.

To work with codes without structures is really hard. Hence, we work
with linear codes.
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Definition 4.2 A linear code C over Fq of length n and dimension k is a
k-dimensional subspace of Fnq . Linear codes of length n and dimension k are
denoted by [n, k]; we say that [n, k] are the parameters of the code.

There exist two usual ways of defining a linear code: by means of gener-
ator matrices or based on parity check matrices.

Definition 4.3 Let C be a linear code over Fq with parameters [n, k]. A
generator matrix G for C is a k × n matrix with entries in Fq such that the
rows of G form a basis for C.

In general, a generator matrix of a linear code is not unique. However, in
the case below one has the uniqueness.

Definition 4.4 Let C be a linear code over Fq with parameters [n, k]. If the
first k coordinates form an information set, then C has a unique generator
matrix of the form [Ik|A] with entries in Fq, where Ik is the identity matrix
of order k. This matrix is said to be in standard form.

Another way of defining a linear code is by means of parity check matrices.

Definition 4.5 Let C be a linear code over Fq with parameters [n, k]. A parity
check matrix for C is an (n− k)× n matrix H with entries in Fq defined by

C = {c ∈ Fnq |HcT = 0},

where cT denotes the transpose of vector c.

The rows of H are also linearly independent (they form a basis for the
(Euclidean) dual C⊥ of C). Evidently, in general, a parity check matrix of a
given code is not unique.

Theorem 4.1 Let C be a linear code over Fq with parameters [n, k]. If G =
[Ik|A] is a generator matrix for C then H = [−AT |In−k] is a parity check
matrix for C.

Example 4.1 An example of a linear code is the well-known binary Hamming
code with parameters [7, 4] with generator matrix (in standard form)

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


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and parity check matrix (in standard form)

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 0 1 1 0 1 0

 .
As we will see later, the Hamming code has minimum distance three (see
Proposition 4.2).

Another important parameter of a linear code is the minimum distance.
To define this concept we need first to define Hamming distance.

Definition 4.6 The Hamming distance d(v,w) between two vectors v,w in
Fnq is the number of coordinates in which v and w differ.

We are now ready to define the minimum distance of a code, which is
totally correlated with the power of error-correction of the code.

Definition 4.7 The minimum distance of a code C (not necessarily linear) is
the smallest Hamming distance between distinct codewords of C.

Definition 4.8 Let v ∈ Fnq . The Hamming weight wt(v) of v is defined as the
number of nonzero coordinates in v.

It is easy to see that for all vectors v,w ∈ Fnq it follows that

d(v,w) = wt(v−w).

Since in the case of linear codes for every v,w ∈ C implies that v−w ∈ C
we have the following result.

Proposition 4.1 Let C be a linear code over Fq. Then the minimum distance
of C is equal to the minimum weight of all nonzero codewords of C.

Hence, if the code is linear, then its minimum distance is also called the
minimum weight of the code.

We have now the complete set of parameters of a linear code, i.e., length,
dimension and minimum distance: a linear code C of length n, dimension k
and minimum distance d over Fq, is denoted by [n, k, d]q.

There exists a well-known way to find the minimum distance of a linear
code.
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Proposition 4.2 Let C be a linear code over Fq with parity check matrix H.
Then C has minimum weight d if and only if H has a set of d linearly
dependent columns but no set of d− 1 linearly dependent columns.

The minimum distance of a code is totally correlated with the error-
correcting capacity of the code.

Theorem 4.2 A code C having minimum distance d can correct
⌊
(d−1)

2

⌋
er-

rors. If d is even, the code can simultaneously correct (d−2)
2

errors and detect
d/2 errors.

By applying Proposition 4.2 in the parity check matrix

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 0 1 1 0 1 0


of the binary [7, 4] Hamming code of Example 4.1, we see that the code has
minimum distance 3, i.e., the Hamming code is a single-error-correcting code
due to Theorem 4.2.

4.1 Dual codes

Let C be an [n, k, d]q linear code over Fq with parity check matrix H. Since
the rows of H are linearly independent, H is a generator matrix of some
code, called Euclidean dual code of C, denoted by C⊥. The dual code C⊥

has length n and dimension n− k.
The dual code can be also defined by an alternative way by means of the

usual (Euclidean) inner product on Fnq in the following way. Recall that if
v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) are two vectors in Fnq then the
Euclidean inner product v ·w of v and w is defined as

v ·w =
n∑
i=1

viwi.

Based on Definition 4.5, we have the following.

Definition 4.9 The Euclidean dual code C⊥ of o linear code C is defined as

C⊥ = {v ∈ Fnq | v · c = 0 ∀ c ∈ C}.
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It is easy to see that if G and H are generator and parity check matrices,
respectively, for a given code C, then it follows that H and G are generator
and parity check matrices, respectively, for the dual C⊥.

Let C ⊆ Fnq2 be a linear code defined over Fq2 . In this case we can also

define the dual code C⊥H of C with respect to the Hermitian inner product.
To do this, let v,w ∈ Fnq2 be two vectors.

Definition 4.10 The Hermitian inner product 〈v|w〉H of v,w ∈ Fnq2 is defined
as

〈v|w〉H = vq ·w =
n∑
i=1

vqiwi,

where vq = (vq1, v
q
2, . . . , v

q
n).

Based on the Hermitian inner product, one has the Hermitian dual code
C⊥H of C.

Definition 4.11 Let C ⊆ Fnq2 be a linear code. The Hermitian dual code C⊥H

of C is defined by

C⊥H = {v ∈ Fnq2 |vq · c = 0 ∀ c ∈ C}.

4.2 Cyclic codes

In this part, we review the concept of cyclic and Bose-Chaudhuri-Hocquenghem
(BCH) codes. For more details the reader can consult the textbooks [8, 14].

We assume that q is a prime power and Fq is the finite field with q
elements. Cyclic codes form an important class of linear codes. In this work
we always assume that gcd(q, n) = 1, where n is the length of the code.
Recall that he multiplicative order of q modulo n ordn(q) is the smallest
positive integer m such that n|(qm − 1).

Definition 4.12 The minimal polynomial over Fq of β ∈ Fqm is the monic
polynomial of smallest degree, M(x), with coefficients in Fq such that M(β) =
0. If β = αi for some primitive element α ∈ Fqm then the minimal polynomial
of β = αi is denoted by M (i)(x).

Irreducible polynomials are generated in the following way.

Theorem 4.3 xq
m − x = product of all monic, irreducible polynomials over

Fq, whose degree divides m.
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Cyclotomic cosets are fundamental for the development of the quantum
code constructions presented in this book.

Definition 4.13 The q-ary cyclotomic coset (or q-ary coset or even q-coset)
modulo n containing an element s, is defined by {s, sq, sq2, sq3, . . . , sqms−1},
where ms is the smallest positive integer such that sqms ≡ s mod n. If s is
the smallest number in coset, this coset is denoted by Cs.

The following result is well known.

Theorem 4.4 xn− 1 =
∏
j

M (j)(x), where M (j)(x) denotes the minimal poly-

nomial of αj ∈ Fqm and j runs through the coset representatives mod n.

Let Fq[x] denote the ring of polynomials in Fq and consider the quotient
ring Rn = Fq[x]/(xn − 1). From this context we define the concept of cyclic
code.

Definition 4.14 A cyclic code of length n over Fq is a nonzero ideal in Rn.

It is well known that there exists only one polynomial g(x) with minimal
degree in C; g(x) is a generator polynomial of C. Moreover, g(x) is a factor
of xn− 1. The dimension of a cyclic code C is equal to n− deg(g(x)), where
deg(g(x)) is the degree of the polynomial g(x).

The dual code C⊥ of a cyclic code C is also cyclic and has generator
polynomial given by

g(x)⊥ = xdeg h(x)h(x−1), (1)

where h(x) = (xn − 1)/g(x).

Definition 4.15 Two codes C and C∗ are called equivalent if they differ only
in the arrangement of symbols. More precisely, if C is the row space of a
matrix G, then C∗ is a code equivalent to C if and only if C∗ is the row space
of a matrix G∗ that is obtained from G by rearranging columns.

Based on Definition 4.15 and from Eq. (1), it follows that the code with
generator polynomial h(x) is equivalent to the (Euclidean) dual code C⊥.

Let us recall the well-known BCH bound theorem.
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Theorem 4.5 (The BCH bound) Let q be a prime power and α a primitive
nth root of unity. Let C be a cyclic code with generator polynomial g(x) such
that, for some integers b ≥ 0 and δ ≥ 1, and for α ∈ Fq, we have

g(αb) = g(αb+1) = . . . = g(αb+δ−2) = 0,

that is, the code has a sequence of δ − 1 consecutive powers of α as zeros.
Then the minimum distance of C is greater than or equal to δ.

In the sequence we present the definition of a BCH code.

Definition 4.16 [2, 3, 7] Let q be a prime power and let n be a positive integer
such that gcd(q, n) = 1. Assume that α is a primitive nth root of unity. A
cyclic code C of length n over Fq is a BCH code with designed distance δ if,
for some integer b ≥ 0, we have

g(x) = l. c.m.{M (b)(x),M (b+1)(x), . . . ,M (b+δ−2)(x)},

that is, g(x) is the monic polynomial of smallest degree over Fq having αb, αb+1,
. . . , αb+δ−2 as zeros.

Therefore, c ∈ C if and only if c(αb) = c(αb+1) = . . . = c(αb+δ−2) = 0.
Thus the code has a string of δ − 1 consecutive powers of α as zeros, Hence,
from the BCH bound, its minimum distance is at least δ. If n = ql − 1 then
the BCH code is called primitive and if b = 1 it is called narrow-sense. A
parity check matrix for C is given by

Hδ,b =


1 αb α2b · · · α(n−1)b

1 α(b+1) α2(b+1) · · · α(n−1)(b+1)

...
...

...
...

...
1 α(b+δ−2) · · · · · · α(n−1)(b+δ−2)

 ,
where each entry is replaced by the corresponding column of l = ordn(q)
elements from Fq, then removing any linearly dependent rows. The rows of
the resulting matrix over Fq are the parity checks satisfied by C.

5 Quantum code constructions

Quantum codes are fundamental to the error protection in quantum com-
puters. We present here some constructions of quantum codes derived from
classical BCH codes by means of the CSS construction.
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5.1 BCH codes - part I

The material contained in this subsection can be found in [11, 12]. In this
subsection we present five constructions of nonbinary quantum BCH codes:

• the first two ones are based on non-primitive BCH codes

• the third construction is based on Steane’s enlargement of nonbinary
CSS codes applied to suitable nonprimitive non-narrow-sense BCH
codes.

• the fourth construction is obtained from suitable Hermitian dual-containing
nonprimitive non-narrow-sense BCH codes constructed here.

• the fifth one is based on finding cyclic codes whose defining set consists
of only one coset with at least two consecutive integers.

To be more precise, our families of quantum BCH codes have parameters
described in the sequence:

• [[n, n− 4(c− 2)− 2, d ≥ c]]q, where q ≥ 4 is a prime power, n is an
integer with gcd(q, n) = 1, (q−1) | n, m = ordn(q) = 2 and 2 ≤ c ≤ r,
where r is such that n = r(q − 1);

• [[n, n− 2mr, d ≥ r + 2]]q, where m = ordn(q) ≥ 2, n is a prime num-
ber and r is the number of cosets satisfying suitable conditions (see
Theorem 5.4);

• [[n, n−m(2r − 1), d ≥ r + 2]]q, where m = ordn(q) ≥ 2, n is a prime
number and q ≥ 3;

• [[n, n− 4c, d ≥ c+ 2]]q, where n > q is an integer with gcd(q, n) = 1,
(q − 1) | n, m = ordn(q) = 2, 1 ≤ c ≤ r − 3 and r > 3 satisfies
n = r(q − 1);

• [[n, n− 4c− 2, d ≥ c+ 2]]q, where 2 ≤ c ≤ r − 2, q > 3, n = r(q2 − 1),

r > 1 and m = ordn(q2) = 2;

• [[n, n− 2mr, d ≥ r + 2]]q, where q ≥ 3 is a prime power, n > q2 is a

prime number such that gcd(q, n) = 1, m = ordn(q2) ≥ 2 and r is the
number of cosets satisfying suitable conditions (see Theorem 5.9).
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• [[n, n−2m∗, d ≥ r+2]]q, where q ≥ 3 is a prime power and n > m (m =
ordn(q) ≥ r+ 2) is a positive integer such that gcd(q, n) = 1, gcd(qai −
1, n) = 1 for every i = 1, 2, . . . , r, where 1 ≤ r, a1, a2, . . . , ar < m are
integers, and n| gcd(t2, . . . , tr), where tj = [(j− (j−1)qaj)(qaj − 1)−1−
(qa1 − 1)−1] for every j = 2, . . . , r (the operations are performed modulo
n).

We always assume that gcd(q, n) = 1 because this condition ensures that
C has simple roots. Additionally, we utilize the notation C[a] to denote the
cyclotomic coset containing a, where a is not necessarily the smallest number
in C[a].

5.1.1 Construction I - Nonprimitive Codes

We start by showing Lemma 5.1.

Lemma 5.1 Let q ≥ 3 be a prime power and let n > q be an integer such
that gcd(q, n) = 1. Assume also that (q − 1) | n and m = ordn(q) ≥ 2 hold.
Then each of the q-ary cosets C[lr] has only one element, where r is given by
n = r(q − 1), and 1 ≤ l ≤ q − 2 is an integer.

Proof: Since rq = n+ r holds, one has

(lr)q = l(n+ r) ≡ lr mod n;

hence

(lr)qt ≡ lr mod n

for each 1 ≤ t ≤ m− 1, proving the lemma. �

Lemma 5.1 is applied in the proof of Theorem 5.1.

Theorem 5.1 Assume that q > 3 is a prime power and n > q is an integer
relatively prime with q. Assume also that (q−1) | n and m = ordn(q) = 2 are
true. Then there exists a quantum code with parameters [[n, n− 4(r − 2)− 2, d ≥ r]]q,
where r is such that n = r(q − 1).

Proof: Since n | (q2 − 1) and because we consider only nonprimitive BCH
codes, it follows that r ≤ q. As gcd(q, n) = 1, one has r < q, so the
inequalities (r−2)q < n and r+(r−2)q < n hold. We next show that all the
q-ary cosets (modulo n of course) given by C[0] = {0},C[1] = {1, q},C[2] =
{2, 2q},C[3] = {3, 3q}, . . . ,C[r−2] = {r − 2, (r − 2)q},C[r] = {r},C[r+1] =
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{r+1, r+q},C[r+2] = {r+2, r+2q}, . . . ,C[2r−2] = {2r−2, r+(r−2)q}, are
mutually disjoint and, with exception of the cosets C[0] = {0} and C[r] = {r},
each of them has two elements.

The cosets C[0] and C[r] have only one element. Let us show that each of
the other cosets has two elements. Since (r−2)q < n, then the congruence l ≡
lq mod n implies that l = lq, where 1 ≤ l ≤ r− 2, which is a contradiction.
If r + s ≡ (r + s)q mod n, where 1 ≤ s ≤ r − 2, then r + s = r + sq, which
is a contradiction.

From now on, we show that all these cosets given above and C[0] and
C[r] are mutually disjoint. We only consider the case C[r+l] = C[r−s], where
1 ≤ l, s ≤ r − 2, since the other cases are similar to this one. Seeking a
contradiction, we assume that C[r+l] = C[r−s], where 1 ≤ l, s ≤ r − 2. If the
congruence (r + l) ≡ (r − s) mod n holds, we obtain

(r + l) ≡ (r − s) mod n =⇒ n | (l + s).

If l + s 6= 0, one has n ≤ l + s, which is a contradiction. If l + s = 0, this
implies l = −s, which is a contradiction.

On the other hand, if (r + l)q ≡ r − s mod n holds, we have

(r + l)q ≡ r − s =⇒ lq ≡ −s mod n

=⇒ n | (lq + s).

Since l, s ≤ r − 2 and r < q are true, if lq + s 6= 0 holds. it follows that
lq + s < n, which is a contradiction. If lq + s = 0 then lq = −s, which is
a contradiction. Thus all the q-ary cosets C[0], C[1], . . . ,C[r−2], are disjoint
from each of the q-ary cosets C[r], C[r+1], . . . ,C[2r−2]. Additionally, all the q-
ary cosets C[0], C[1], . . . ,C[r−2], are mutually disjoint and all the q-ary cosets
C[r], C[r+1], . . . ,C[2r−2] are also mutually disjoint.

Let C1 be the cyclic code generated by the product of the minimal poly-
nomials

M (0)(x)M (1)(x) · . . . ·M (r−2)(x),

and C2 be the cyclic code generated by g2(x), that is the product of the
minimal polynomials

g2(x) =
∏
i

M (i)(x),

where i /∈ {r, r + 1, . . . , 2r − 2} and i runs through the coset representatives
mod n. From construction it follows that C2 ( C1. From the BCH bound,
the minimum distance of C1 is greater than or equal to r, because its defining
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set contains the sequence 0, 1, . . . , r − 2, of r − 1 consecutive integers. Simi-
larly, the defining set of the code C generated by the polynomial h(x) = xn−1

g2(x)

contains the sequence r, r+1, . . . , 2r−2, of r−1 consecutive integers and so,
from the BCH bound, C also has minimum distance greater than or equal
to r. Since the code C⊥2 is equivalent to C, C⊥2 also has minimum distance
greater than or equal to r. Therefore, the resulting CSS code has minimum
distance greater than or equal to r.

Next we compute the dimension of the corresponding CSS code. We know
that the degree of the generator polynomial of a cyclic code is equal to the
cardinality of its defining set. Furthermore, the defining set Z1 of C1 has r−1
disjoint cyclotomic cosets. Moreover, all of them (except coset C0) have two
elements; hence Z1 has 2(r − 2) + 1 elements. Therefore, C1 has dimension
k1 = n− 2(r − 2)− 1. Similarly, C2 has dimension k2 = 2(r − 2) + 1. Thus
the dimension of the corresponding CSS code is n− 4(r − 2)− 2. Applying
the CSS construction to the codes C1 and C2, one can get a quantum code
with parameters [[n, n− 4(r − 2)− 2, d ≥ r]]q. The proof is complete. �

We illustrate Theorem 5.1 by means of a graphical scheme:

C1︷ ︸︸ ︷
C[0]C[1] C[2] . . . C[r−2]︸ ︷︷ ︸

C2

C︷ ︸︸ ︷
C[r] C[r+1] . . . C[2r−2] C[a1] . . .C[an]︸ ︷︷ ︸

C2

.

Observe that the union of the q-cosets C[0],C[1], . . . ,C[r−2] is the defining
set of code C1; the union of the cosets C[0],C[1], . . . ,C[r−2],C[a1], . . . ,C[an]

is the defining set of C2, where C[a1], . . . ,C[an] are the remaining cosets in
order to complete the set of all q-cosets. Finally, the union of the cosets
C[r],C[r+1], . . . ,C[2r−2] is the defining set of C.

As an immediate result we have:

Corollary 5.1 Assume that all the hypotheses of Theorem 5.1 are valid. Then
there exists a quantum code with parameters [[n, n− 4(c− 2)− 2, d ≥ c]]q,
where 2 ≤ c < r.

Proof: Let C1 be the cyclic code generated by the product of the minimal
polynomials

M (0)(x)M (1)(x) · . . . ·M (c−3)(x)M (c−2)(x),
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and C2 be the cyclic code generated by the product of the minimal polyno-
mials ∏

i

M (i)(x),

where i /∈ {r, r + 1, . . . , r + c − 2} and i runs through the coset representa-
tives mod n. Proceeding similarly as in the proof of Theorem 5.1, the result
follows. �

Example 5.1 As an example, let us consider that q = 9 and n = 40; then
gcd(9, 40) = 1, 8 | 40 and ord40(9) = 2. In this case we have r = 5. Theo-
rem 5.1 asserts the existence of a quantum code with parameters [[40, 26, d ≥ 5]]9.
Consider next q = 11 and n = 30. Let C1 be the cyclic code generated
by the product of the minimal polynomials M (0)(x)M (1)(x) . . . M (6)(x) and
C2 be the cyclic code generated by the product of the minimal polynomials∏
i

M (i)(x), where i /∈ {7, 10, 15, 16, 18, 19, 21} and i runs through the coset

representatives mod 30. Proceeding similarly as in the proof of Theorem 5.1,
an [[30, 8, d ≥ 8]]11 quantum code can be constructed.

5.1.2 Construction II - Codes of prime length

Here the attention is focused on cyclic codes of prime length. Among the
contributions exhibited in this subsection, we prove there exists at least one
q-ary coset containing two consecutive integers (see Lemma 5.2). In order to
proceed further, let us recall a well-known result from number theory.

Theorem 5.2 A linear congruence ax ≡ b (mod m), where a 6= 0, admits an
integer solution if and only if d = gcd(a,m) divides b.

Applying Theorem 5.2 we prove Lemma 5.2.

Lemma 5.2 Assume that q ≥ 3 is a prime power, n > q is a prime number
and consider that m = ordn(q) ≥ 2. Then there exists at least one q-ary
coset containing two consecutive integers.

Proof: Note first that gcd(q, n) = 1. In order to prove this lemma, it suffices
to show that the congruence xq ≡ x + 1( mod n) has at least one solution
for some 0 ≤ x ≤ n−1 or, equivalently, the congruence (q−1)x ≡ 1 (mod n)
has at least one solution. We know that gcd(q−1, n) = 1, because n > q and
n is prime. Since q − 1 6= 0, it follows from Theorem 5.2 that (q − 1)x ≡ 1
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(mod n) has an integer solution x0. Applying the division algorithm for x0
and n we have x0 = ns0+r0, where r0 and s0 are integers and 0 ≤ r0 ≤ n−1.
Since (q − 1)x0 ≡ 1 (mod n) holds then the congruence (q − 1)r0 ≡ 1 (mod
n) also holds. Therefore, the result follows. �

Remark 5.1 Note that in Lemma 5.2 it is not necessary to assume that n is
a prime number. In fact, we need only to suppose that gcd(q− 1, n) = 1 and
gcd(q, n) = 1 hold. However, since the corresponding q-ary cosets of BCH
codes of prime length have nice properties, we have assumed that n is prime.
However, if one assumes that gcd(q− 1, n) = 1 and gcd(q, n) = 1 hold, more
good quantum codes can be constructed.

Theorem 5.3 Let q ≥ 3 be a prime power, n > q be a prime number and
consider m = ordn(q) ≥ 2. Suppose also that the q-cosets C[s] and C[−s] are
disjoint, where C[s] is a q-coset containing two consecutive integers. Then
there exists an [[n, n− 2m, d ≥ 3]]q quantum code.

Proof: Note that gcd(q, n) = 1. Let C1 be the code generated by M (s)(x)

and C2 generated by
∏
i

M (i)(x), where i 6= −s and i runs through the coset

representatives mod n. It is easy to see that the cosets C[s] and C[−s] contain
m elements. Proceeding similarly as in the proof of Theorem 5.1, the result
follows. �

Theorem 5.4 Let q ≥ 3 be a prime power, n > q be a prime and consider that
m = ordn(q) ≥ 2. Let C[s] be the q-coset containing s and s + 1. Suppose
also that all the q-ary cosets C[s],C[s+2], . . . ,C[s+r],C[−s],C[−s−2], . . . ,C[−s−r],
are mutually disjoint. Then there exists a quantum code with parameters
[[n, n− 2mr, d ≥ r + 2]]q.

Proof: We know that gcd(q, n) = 1 and the coset C[−s] also contains two
consecutive integers, namely, −s − 1 and −s. Let C1 be the cyclic code
generated by

M (s)(x)M (s+2)(x) · . . . ·M (s+r)(x),

and let C2 be the cyclic code generated by the polynomial g2(x), that is the
product of the minimal polynomials

g2(x) =
∏
j

M (j)(x),
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where j /∈ {−s − r, . . . ,−s − 2,−s} and j runs through the coset represen-
tatives mod n.

From the BCH bound, the minimum distance of C1 is greater than or
equal to r+ 2 because its defining set contains the sequence of r+ 1 consec-
utive integers given by s, s+ 1, s+ 2, . . . , s+ r. Similarly, the defining set of
the code C generated by the polynomial h2(x) = (xn − 1)/g2(x), contains a
sequence of r+1 consecutive integers given by −s−r, . . . ,−s−2,−s−1,−s.
Again, from the BCH bound, C has minimum distance greater than or equal
to r + 2. Since C is equivalent to C⊥2 , it follows that C⊥2 also has minimum
distance greater than or equal to r + 2. Therefore, the resulting CSS code
have minimum distance greater than or equal to r+2. If s ∈ [1, n−1] satisfies
gcd(s, n) = 1 then the coset Cs has cardinality m. In fact, if |Cs| = c < m
it follows that n|s(qc − 1), so n|(qc − 1), a contradiction. Thus, since n is
prime, each of the cosets Cs, where s ∈ [1, n − 1], has cardinality m. Ad-
ditionally, from the hypotheses, all the q-ary cosets C[s],C[s+2], . . . ,C[s+r],
are mutually disjoint. Thus C1 has dimension k1 = n − mr and C2 has
dimension k2 = mr, since there exist r disjoint q-cosets not contained in
the defining set of C2, where each of them has cardinality m. Therefore,
the corresponding CSS code has dimension K = n − 2mr. Since the cosets
C[s],C[s+2], . . . ,C[s+r], C[−s],C[−s−2], . . . ,C[−s−r], are mutually disjoint, it fol-
lows that C2 ( C1. Applying the CSS construction to C1 and C2, one obtains
an [[n, n− 2mr, d ≥ r + 2]]q quantum code, and we are done. �

Example 5.2 Theorem 5.4 has variants as follows: to construct an [19, 13, d ≥
3]]7 quantum code, let us consider that q = 7, n = 19 and m = 3. The cosets
are given by C2 = {2, 14, 3} and C16 = {5, 16, 17}. Let C1 be generated

by M (2)(x) and C2 generated by g2(x) =
∏
i

M (i)(x), where i /∈ {16} and

i runs through the coset representatives mod 19. Then an [[19, 13, d ≥ 3]]7
quantum code can be constructed. Proceeding similarly, one can get quan-
tum codes with parameters [[31, 25, d ≥ 3]]5, [[71, 61, d ≥ 3]]5, [[11, 1, d ≥ 4]]3,
[[31, 19, d ≥ 4]]5, [[31, 13, d ≥ 5]]5, [[71, 51, d ≥ 4]]5, [[71, 41, d ≥ 6]]5.

5.1.3 Construction III - Codes Derived from Steane’s Construc-
tion

In this subsection we construct families of quantum BCH codes of prime
length by applying Steane’s enlargement of nonbinary CSS construction [6,
Corollary 4]. These new families have parameters better than the parameters
of the quantum BCH codes available in the literature. Let us recall the
Steane’s enlargement code construction applied to nonbinary alphabets.
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Corollary 5.2 [6, Corollary 4] Assume that we have an [N0, K0] linear code
L which contains its Euclidean dual, L⊥ ≤ L, and which can be enlarged
to an [N0, K

′
0] linear code L

′
, where K

′
0 ≥ K0 + 2. Then there exists a

quantum code with parameters [[N0, K0 + K
′
0 − N0, d ≥ min{d, d q+1

q
d

′e}]],
where d = w(L\L′⊥

) and d
′
= w(L

′\L′⊥
).

Euclidean dual-containing cyclic codes can be derived from Lemma 5.3:

Lemma 5.3 [1, Lemma 1] Assume that gcd(q, n) = 1. A cyclic code of length
n over Fq with defining set Z contains its Euclidean dual code if and only if
Z ∩ Z−1 = ∅, where Z−1 = {−z mod n | z ∈ Z}.

In Lemma 5.2 of Section 5.1.2 we have shown the existence of, at least, one
q-ary cyclotomic coset containing two consecutive integers provided the code
length is prime. In what follows, we show how to construct good quantum
codes of prime length by applying Steane’s code construction. We begin by
presenting an illustrative example:

Example 5.3 Assume that n = 31 and q = 5. From Lemma 5.2, there exists
a coset containing at least two consecutive integers; here it is the coset C8 =
{8, 9, 14}. Let C be the cyclic code generated by the product of the minimal
polynomials C = 〈g(x)〉 = 〈M (4)(x)M (8)(x)〉. C has defining set Z = C4 ∪
C8 = {4, 7, 8, 9, 14, 20} and has parameters [31, 25, d ≥ 4]5. From Lemma 5.3,
it is easy to check that C is Euclidean dual-containing. Furthermore, C can
be enlarged to a code C

′
with parameters [31, 28, d ≥ 3]5, whose generator

polynomial is M (8)(x). Applying Corollary 5.2 to C and C
′
, we obtain an

[[31, 22, d ≥ 4]]5 quantum code.

Theorem 5.5 Let q ≥ 3 be a prime power, n > q be a prime and consider
that m = ordn(q) ≥ 2. Let C[s] be the q-ary coset containing s and s + 1
and let Z = C[s] ∪ C[s+2], where Cs 6= C[s+2]. Assume also that Z ∩ Z−1 = ∅
holds. Then there exists an [[n, n− 3m, d ≥ 4]]q code.

Proof: We know that gcd(q, n) = 1. Let C be the cyclic code generated by
〈M (s)(x)M (s+2)(x)〉. By hypothesis and from Lemma 5.3, we know that C is
Euclidean dual-containing; C has parameters [n, n− 2m, d ≥ 4]q. Let C

′
be

the cyclic code generated by M (s)(x). We know that C
′

is an enlargement
of C and it has parameters [n, n−m, d ≥ 3]q. Since m ≥ 2, it follows that

k
′ − k = m ≥ 2, where k

′
is the dimension of C

′
and k is the dimension of

C. Applying the Steane’s code construction to C and C
′
, since q+1

q
> 1, we

get an [[n, n− 3m, d ≥ 4]]q quantum code. �

Theorem 5.5 can be generalized in the following way:
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Theorem 5.6 Assume that q ≥ 3 is a prime power, n > q is a prime number
and consider that m = ordn(q) ≥ 2. Let C[s] be the coset containing s and
s+1. Assume that Z = C[s]∪C[s+2]∪ . . .∪C[s+r], where all the q-cosets C[s+i],
i = 0, 2, 3, . . . , r, are mutually disjoint. Assume also that Z ∩Z−1 = ∅. Then
there exists an [[n, n−m(2r − 1), d ≥ r + 2]]q quantum code.

Proof: We know that gcd(q, n) = 1. Let C be the cyclic code generated by

M (s)(x)M (s+2)(x) · . . . ·M (s+r)(x).

Since Z ∩ Z−1 = ∅, it follows from Lemma 5.3 that C is Euclidean dual-
containing. From the hypotheses, all the q-ary cosets C[s],C[s+2], . . . ,C[s+r]

are mutually disjoint; hence, C has dimension k = n−mr and its minimum
distance is lower bounded by d ≥ r + 2, i.e., C is an [n, n−mr, d ≥ r + 2]q
code. Let C

′
be the cyclic code generated by

M (s)(x)M (s+2)(x) · . . . ·M (s+r−1)(x).

We know that C
′
is an enlargement of C and it has parameters [n, n−m(r−1),

d ≥ r+ 1]q. Since m ≥ 2, we have k
′ − k = m ≥ 2, where k

′
is the dimension

of C
′

and k is the dimension of C. Applying the Steane’s construction to C
and C

′
we obtain an [[n, n−m(2r − 1), d ≥ r + 2]]q code, as required. �

Example 5.4 In this example we construct an [[31, 16, d ≥ 5]]5 quantum code.
For this purpose we take n = 31 and q = 5; then m = ordn(q) = 3. Let C
be the cyclic code generated by M (4)(x)M (6)(x)M (8)(x). It is easy to see that
C is Euclidean dual-containing and has parameters [31, 22, d ≥ 5]5. Let C

′

be the cyclic code generated by M (4)(x)M (8)(x). The code C
′

has parameters
[31, 25, d ≥ 4]5. Thus there exists an [[31, 16, d ≥ 5]]5 quantum code.

We next establish Theorem 5.7, an analogous to Theorem 5.1.

Theorem 5.7 Suppose that q ≥ 5 is a prime power and n > q is an integer
such that gcd(q, n) = 1. Assume also that (q − 1) | n and m = ordn(q) = 2
hold. Then there exists a quantum code with parameters [[n, n− 4c, d ≥ c+ 2]]q,
where 1 ≤ c ≤ r − 3 and r > 3 is such that n = r(q − 1).

Proof: We only prove the existence of an [[n, n− 4(r − 3), d ≥ r − 1]]q code,
since the constructions of the other codes are quite similar.

Let C be the cyclic code generated by

M (r)(x)M (r+1)(x) · . . . ·M (2r−3)(x).
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From Lemma 5.1 and from the proof of Theorem 5.1, we know that the q-
cosets given by C[r] = {r},C[r+1] = {r + 1, r + q},C[r+2] = {r + 2, r +
2q}, . . . ,C[2r−3] = {2r − 3, r + (r − 3)q} are mutually disjoint and each of
them has two elements. Therefore, C has dimension k = n − 2(r − 3) − 1
and minimum distance d ≥ r − 1.

Let us prove that C is Euclidean dual-containing. In fact, if (r + i) ≡
−(r + j) mod n, where 0 ≤ i, j ≤ r − 3, it follows that 2r + i + j ≡ 0
mod n. Since the inequality 2r + i + j < n holds because q ≥ 5, one has a
contradiction. On the other hand, if (r + i)q ≡ −(r + j) mod n holds then

(iq + j)(q − 1) ≡ 0 mod n =⇒
i(q2 − q) + j(q − 1) ≡ 0 mod n =⇒

j(q − 1) ≡ i(q − 1) mod n,

where the latter congruence holds because ordn(q) = 2. Then the unique
solution is when i = j. Let us investigate this case. Seeking a contradiction,
we assume that the congruence (r+ i)q ≡ −(r+ i) mod n is true. Then we
obtain

(r + i)q ≡ −(r + i) mod n =⇒
2r + i(q + 1) ≡ 0 mod n =⇒
r(q − 3) ≡ i(q + 1) mod n.

If 0 ≤ i ≤ r − 4, then

r(q − 3)− i(q + 1) ≥ r(q − 3)− (r − 4)(q + 1) = 4q − 4r + 4 > 0,

where the latter inequality holds because r < q since we only consider non-
primitive BCH codes. Moreover, the inequality r(q − 3) − i(q + 1) < n
also holds, which is a contradiction. If i = r − 3 then the congruence
r(q − 3) ≡ (r − 3)(q + 1) mod n holds, that is, 4r ≡ 3(q + 1) mod n
holds. Since r | (q + 1) and q + 1 > r hold, it implies that q + 1 ≥ 2r so,
3(q + 1) − 4r ≥ 2r > 0. Moreover, the inequality 3(q + 1) − 4r < n holds,
which is a contradiction. Therefore, C is Euclidean dual-containing.

Let C
′

be the cyclic code generated by

M (r)(x)M (r+1)(x) · . . . ·M (2r−4)(x).

C
′
is an enlargement of C; C

′
has dimension k

′
= n−2(r−4)−1 and minimum

distance d
′ ≥ r−2. Since m = 2 then k

′−k = 2, where k
′
denotes the dimen-

sion of C
′

and k is the dimension of C. We know that d q+1
q
d

′e ≥ r−1. Thus,

applying the Steane’s construction one has an [[n, n− 4(r − 3), d ≥ r − 1]]q
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quantum code, as required. �

Recall that an [[n, k, d]]q code C satisfies the quantum Singleton bound
given by k + 2d ≤ n + 2. If C attains the quantum Singleton bound, i.e.,
k + 2d = n + 2, then it is called a quantum maximum distance separable
(MDS) code. In the following two examples we construct quantum MDS-
BCH codes:

Example 5.5 Applying Theorem 5.7 for q = 9 and n = 40 one has r = 5.
Thus there exists an [[40, 36, 3]]9 quantum MDS-BCH code. Analogously, ap-
plying Theorem 5.7 for q = 11 and n = 60 one obtains an [[60, 56, 3]]11 quan-
tum MDS-BCH code. Additionally, an [[60, 48, d ≥ 5]]11 and an [[60, 52, d ≥ 4]]11
quantum codes can be constructed.

5.1.4 Construction IV - Hermitian dual-containing
BCH Codes

In this subsection we present the fourth proposed construction, which is based
on finding good Hermitian dual-containing BCH codes. Let us recall some
useful concepts.

Lemma 5.4 [1, Lemma 13] Assume that gcd(q, n) = 1. A cyclic code of
length n over Fq2 with defining set Z contains its Hermitian dual code if and
only if Z ∩ Z−q = ∅, where Z−q = {−qz mod n | z ∈ Z}.

Lemma 5.5 [1, Lemma 17c] (Hermitian Construction) If there exists a clas-
sical linear [n, k, d]q2 code D such that D⊥H ⊂ D, then there exists an
[[n, 2k − n, ≥ d]]q stabilizer code that is pure to d. If the minimum distance

d⊥H of D⊥H exceeds d, then the stabilizer code is pure and has minimum
distance d.

Let us start with an example of how Lemma 5.1 can be applied together
the Hermitian construction in order to construct good codes. Assume that
q = 7, n = 144, m = 3 and r = 3; the q2-ary cosets C3, C6, C9 and C12 contain
only one element. The other q-cosets are C4 = {4, 52, 100}, C5 = {5, 101, 53},
C7 = {7, 55, 103}, C8 = {8, 104, 56}, C10 = {10, 58, 106}, C11 = {11, 107, 59}.
Let C be the cyclic code generated by M (3)(x)M (4)(x)M (5)(x)M (6)(x)M (7)(x)
M (8)(x)M (9)(x) · M (10)(x)M (11)(x)M (12)(x). It is straightforward to show
that C is Hermitian dual-containing and has parameters [144, 122, d ≥ 11]72 .
Thus, applying the Hermitian construction, we obtain an [[144, 100, d ≥ 11]]7
quantum code. Similarly one can construct quantum codes with parameters
[[144, 102, d ≥ 10]]7, [[144, 108, d ≥ 9]]7, [[144, 114, d ≥ 8]]7, [[144, 116, d ≥ 7]]7,
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[[144, 122, d ≥ 6]]7, [[144, 128, d ≥ 5]]7, [[144, 130, d ≥ 4]]7 and [[144, 136,
d ≥ 3]]7.

Theorem 5.8 Suppose that q > 3 is a prime power and n > q2 is an integer
such that gcd(q2, n) = 1. Assume also that (q2−1) | n and m = ordn(q2) = 2
hold. Then there exists a quantum code with parameters [[n, n− 4(r− 2)− 2,
d ≥ r]]q, where r satisfies n = r(q2 − 1).

Proof: Let C be the cyclic code generated by

M (r)(x)M (r+1)(x) · . . . ·M (2r−2)(x).

We first show that C is Hermitian dual-containing. For this, let us consider
the defining set Z of C consisting of the q2-ary cyclotomic cosets given by
C[r] = {r},C[r+1] = {r + 1, r + q2},C[r+2] = {r + 2, r + 2q2}, . . . ,C[2r−2] =
{2r − 2, r + (r − 2)q2}.

We know that gcd(q, n) = 1 holds. From Lemma 5.4, it suffices to show
that Z ∩ Z−q = ∅. Seeking a contradiction, we assume that Z ∩ Z−q 6= ∅.
Then there exist i, j, where 0 ≤ i, j ≤ r − 2, such that (r + j)ql ≡ −q(r + i)
mod n, where l = 0 or l = 2. If l = 0, one has r + j ≡ −q(r + i) mod n, so
q(r+i)+r+j ≡ 0 mod n. Since both q(r+i)+r+j < n and q(r+i)+r+j 6= 0
are true, one has a contradiction. If l = 2, it implies that (r+j)q2 ≡ −q(r+i)
mod n and since gcd(q2, n) = 1 and rq2 ≡ r mod n one obtains

(r + j)q2 ≡ −q(r + i) mod n

=⇒ r + jq2 ≡ −q(r + i) mod n

=⇒ (q + 1)r ≡ −q(i+ jq) mod n

=⇒ −q(i+ jq)(q − 1) ≡ 0 mod n

=⇒ n | q(i+ jq)(q − 1)

=⇒ r(q + 1) | q(i+ jq).

Since gcd(r, q) = 1 and gcd(q+1, q) = 1 hold it implies that r(q+1) | (i+jq),
which is a contradiction because i+jq < r(q+1). Thus C is Hermitian dual-
containing.

It is easy to see that these cosets are mutually disjoint. With excep-
tion of C[r], the other q-cosets have two elements. Thus, C has dimen-
sion k = n − 2(r − 2) − 1. By construction, the defining set of C con-
tains the sequence r, r + 1, . . . , 2r − 2, of r − 1 consecutive integers and, so
the minimum distance of C is greater than or equal to r, that is, C is an
[n, n− 2(r − 2)− 1, d ≥ r]q2 code. Applying the Hermitian construction to
the code C, one can get an [[n, n− 4(r − 2)− 2, d ≥ r]]q code, as desired.
�
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Corollary 5.3 Suppose q > 3 is a prime power and n > q2 is an integer such
that gcd(q2, n) = 1. Assume also (q2 − 1) | n and m = ordn(q2) = 2. Then
there exist quantum codes with parameters [[n, n− 4c− 2, d ≥ c+ 2]]q, where

2 ≤ c < r − 2 and n = r(q2 − 1).

Proof: Let C be the BCH code generated by

M (r)(x)M (r+1)(x) · . . . ·M (r+c)(x).

Proceeding similarly as in the proof of Theorem 5.8, the result follows. �

Theorem 5.9 Let q ≥ 3 be a prime power, n > q2 be a prime number and
consider that m = ordn(q2) ≥ 2. Let C[s] be the q-coset containing s and
s+ 1. Assume that Z = C[s] ∪C[s+2] ∪ . . .∪C[s+r], where all the q-ary cosets
C[s+i], i = 0, 2, 3, . . . , r, are mutually disjoint, and suppose that Z ∩Z−q = ∅.
Then there exists an [[n, n− 2mr, d ≥ r + 2]]q quantum code.

Proof: We know that gcd(q, n) = 1 holds. Let C be the cyclic code generated
by

M (s)(x)M (s+2)(x) · . . . ·M (s+r)(x).

Since Z∩Z−q = ∅ holds, it follows from Lemma 5.4 that C is Hermitian dual-
containing. From the BCH bound, the minimum distance of C is greater
than or equal to r + 2. It is easy to see that all the cosets C[s+i], where
i = 0, 2, 3, . . . , r, have m elements and they are mutually disjoint. Thus C
has parameters [n, n−mr, d ≥ r + 2]q2 . Applying the Hermitian construc-
tion one can get an [[n, n− 2mr, d ≥ r + 2]]q quantum code. �

We finish this subsection by showing how Lemma 5.2 works for construct-
ing quantum MDS-BCH codes.

Example 5.6 Let us consider q = 5 and n = 13. Since gcd(13, 24) = 1,
the linear congruence (q2 − 1)x ≡ 1 mod n has a solution, so there exists
at least one q2-ary coset containing two consecutive integers, namely, the
coset C[6] = {6, 7}. Let C = 〈M (6)(x)〉. Since C[4] and C[6] are disjoint, C
is Hermitian dual-containing and has parameters [13, 11, d ≥ 3]5. Applying
the Hermitian construction, an [[13, 9, 3]]5 quantum MDS-BCH code is con-
structed. Similarly, we can also construct an [[17, 13, 3]]4 and an [[17, 9, 5]]4
quantum MDS-BCH code.
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5.1.5 Construction V - Codes obtained from a single coset

In this subsection show the existence of (classical) cyclic codes whose defining
set consists of only one cyclotomic coset containing at least two consecutive
integers. This fact allows us to construct quantum codes with good param-
eters.

Lemma 5.6 in the following is a particular case of the CSS construction.

Lemma 5.6 [1, Lemma 17] If there exists a classical linear [n, k, d]q code C
such that C⊥ ⊂ C, then there exists an [[n, 2k− n,≥ d]]q stabilizer code that
is pure to d.

Theorem 5.10 establishes conditions for the existence of a cyclic code
whose defining set consists of only one q-coset containing at least two con-
secutive integers. This fact produces conditions to construct quantum codes
with good parameters (in the sense of the QSB).

Theorem 5.10 Let q ≥ 3 be a prime power and n > m be a positive integer
such that gcd(q, n) = 1 and gcd(qai − 1, n) = 1 for every i = 1, 2, . . . , r,
where m = ordn(q) ≥ r + 2 and 1 ≤ r, a1, a2, . . . , ar < m are integers. If
n| gcd(t2, . . . , tr), where tj = [(j − (j − 1)qaj)(qaj − 1)−1 − (qa1 − 1)−1] for
every j = 2, . . . , r (the operations are performed modulo n), then there exists
an [n, n−m∗, d ≥ r+2]q cyclic code, where m∗ is the cardinality of the q-coset
containing r + 1 consecutive integers.

Proof: We will investigate the following system of congruences

xqa1 ≡ (x+ 1) mod n

(x+ 1)qa2 ≡ (x+ 2) mod n

(x+ 2)qa3 ≡ (x+ 3) mod n
...

(x+ r − 1)qar ≡ (x+ r) mod n,

where 1 ≤ r, a1, a2, . . . , ar < m. Since gcd(qai − 1, n) = 1 for every i =
1, 2, . . . , r, it follows that such system is equivalent to

x ≡ (qa1 − 1)−1 mod n

x ≡ (2− qa2)(qa2 − 1)−1 mod n

x ≡ (3− 2qa3)(qa3 − 1)−1 mod n
...

x ≡ [r − (r − 1)qar ](qar − 1)−1 mod n,
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where (qai − 1)−1 denotes the multiplicative inverse of (qai − 1) modulo n.
We know that the last system has a solution if and only if

[j − (j − 1)qaj ](qaj − 1)−1 ≡ [i− (i− 1)qai ](qai − 1)−1 mod n

for all i, j = 2, . . . , r and

(qa1 − 1)−1 ≡ [i− (i− 1)qai ](qai − 1)−1 mod n

for all i = 2, . . . , r. This fact means that

n|[(j − (j − 1)qaj)(qaj − 1)−1 − (qa1 − 1)−1]

for every j = 2, . . . , r, i.e., n| gcd(t2, . . . , tr), where

tj = [(j − (j − 1)qaj)(qaj − 1)−1 − (qa1 − 1)−1]

for all j = 2, . . . , r.
Let C be the cyclic code whose defining is the q-coset Cx. From con-

struction, the defining set of C, i.e., the coset Cx, contains the sequence
x, x + 1, . . . , x + r of r + 1 consecutive integers. From the BCH bound, the
minimum distance d of C satisfies d ≥ r + 2. Since |Cx| = m∗, C has di-
mension n−m∗. We then obtain an [n, n−m∗, d ≥ r+2]q code, as required. �

If the code length is prime we have the following particular case of The-
orem 5.10.

Corollary 5.4 Let q ≥ 3 be a prime power and n > m be a prime number such
that gcd(q, n) = 1, where m = ordn(q) ≥ r + 2 and 1 ≤ r, a1, a2, . . . , ar < m
are integers. Assume that n| gcd(t2, . . . , tr), where tj = [(j − (j − 1)qaj)
(qaj − 1)−1−(qa1 − 1)−1] for every j = 2, . . . , r and a1, a2, . . . , ar are integers
such that 1 ≤ a1 + a2 + . . . + ar < m (the operations are performed modulo
n). Then there exists an [n, n−m∗, d ≥ r + 2]q cyclic code.

Proof: Notice that since n is prime, it follows that gcd(qai − 1, n) = 1 for ev-
ery i = 1, 2, . . . , r, because a1, a2, . . . , ar < m. We next apply Theorem 5.10
to obtain the desired result. �

In order to proceed further, we will denote by C−x the coset of −x, where
−x is taken modulo n. With this notation we have the following result.

Theorem 5.11 Assume all hypotheses of Theorem 5.10 hold. Let C be the
cyclic code with defining set Cx, where Cx is a coset containing r + 1 con-
secutive integers. If Cx 6= C−x then there exists an [[n, n− 2m∗, d ≥ r + 2]]q
quantum code.
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Proof: From [1, Lemma 1], C contains its Euclidean dual code C⊥. The
dimension and the minimum distance of the corresponding quantum code
follow directly from Theorem 5.10 and from Lemma 5.6. �

Let us present some examples of how our construction works.

Example 5.7 Consider that q = 5 and n = 11; hence m = ord11(5) = 5. The
5-cosets are given by C0 = {0}, C1 = {1, 5, 3, 4, 9} and C2 = {2, 10, 6, 8, 7}.
If C1 is the cyclic code with defining set C1, then C1 is a dual-containing
code with parameters [11, 6, d ≥ 4]5. From Lemma 5.6, one can get an
[[11, 1, d ≥ 4]]5 code.

Let us now take q = 17 and n = 19; so m = ord19(17) = 9. If C1

is the code with defining set C1 = {1, 17, 4, 11, 16, 6, 7, 5, 9} we obtain an
[[19, 1, d ≥ 5]]17 code.

Similarly, we can construct an [61, 56, d ≥ 3]9 code C2 with defining set
C8 = {8, 11, 38, 37, 28}. We know that C2 is a dual-containing code, so an
[[61, 51, d ≥ 3]]9 quantum code exists.

We can also construct an [67, 64, d ≥ 3]29 dual-containing code with defin-
ing set C12 = {12, 13, 42}. Hence, there exists an [[67, 61, d ≥ 3]]29 quantum
code.

The existence of an [35, 31, d ≥ 3]13 dual-containing code generates an
[[35, 27, d ≥ 3]]13 quantum code. An [35, 31, d ≥ 3]27 dual-containing code
with defining set C3 = {3, 11, 17, 4} guarantees the existence of an [[35, 27, d ≥
3]]27 quantum code. An [73, 70, d ≥ 3]64 dual-containing code with defining
set C21 = {22, 21, 30} exists, so there exists an [[73, 67, d ≥ 3]]64 quantum
code.

Example 5.8 In this example, we construction cyclic codes whose defining
set consists of two q-cosets (the idea is the same as that presented in Theo-
rem 5.10). An [35, 27, d ≥ 4]27 dual-containing code C with defining set con-
sisting of C2 and C3 ensures the existence of an [[35, 19, d ≥ 4]]27 quantum
code. Taking the cosets C14 = {14, 20, 30} and C21 one has an [[73, 61, d ≥
4]]64 quantum code. Similarly, an [[63, 51, d ≥ 3]]11 quantum code (coset C43)
and an [[63, 39, d ≥ 4]]11 code (cosets C43 and C20) can be constructed. Anal-
ogously, an [[63, 51, d ≥ 3]]23 and an [[63, 45, d ≥ 4]]23 quantum code (cosets
C4 and C27) can be constructed.

In this section we compare the parameters of our quantum BCH codes
with the ones available in the literature. The codes available in the literature
derived from Steane’s code construction are generated by the same method
presented in [16, Table I] by considering the criterion for classical Euclidean
dual-containing BCH codes given in [1, Theorems 3 and 5].
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Let us fix the notation:

• [[n, k, d]]q are the parameters of the new quantum codes;

• [[n
′
, k

′
, d

′
]]q =

[[n
′
, n

′ − 2m(d(δ − 1)(1− 1/q)e), d′ ≥ δ]]q are the parameters of quan-
tum codes available in [1];

• [[n
′′
, k

′′
, d

′′
]]q are the parameters of quantum BCH codes derived from

Steane’s code construction shown in [6, Corollary 4].

Table 1 displays a comparison of the parameters of some CSS codes con-
structed here with the parameters of the CSS codes shown in [1], and Table 2
shows a comparison between our CSS codes with the quantum codes derived
from the nonbinary Steane’s construction (see Corollary 5.2).

Tables 3 and 4 show our codes obtained from Construction I and from
Theorem 5.4 in Construction II, respectively. Table 5 presents some codes
generated from Construction III, and Table 6 displays some codes generated
from Construction IV. Finally, Table 7 exhibited some codes derived from
Construction V.

Checking the parameters of the our quantum BCH codes tabulated, one
can see that our codes have parameters better than the ones available in
the literature. In other words, fixing the code length n and the minimum
distance d (or the lower bound for the minimum distance d, since the true
minimum distance of BCH are not known in general), the quantum BCH
codes constructed here achieve greater values of the number of qudits than
the quantum BCH codes available in the literature.

Remark 5.2 The procedure of code comparison exhibited above will be adop-
ted throughout the entire book in order to perform the comparison among the
parameters of the quantum codes constructed here with the parameters of the
quantum codes available in the literature. In other words: to compare the
parameters of an [n, k1, d]q quantum code Q1 constructed here, we perform a
searching for a quantum code of length n and minimum distance d. If such
code Q2 is an [n, k2, d]q code with k1 > k2, then Q1 is better than Q2; if
k2 > k1 it implies that Q2 is better than Q1. In many cases we fix the code
length and the lower bound for the minimum distance as it was said above
(see Tables 1 to 7 to see this), after comparing the code dimension, as was
done earlier. This criterion of code comparison is usual in the literature.

Note that our [[1093, 1079, d ≥ 3]]3 code has the same parameters of the
corresponding Hamming code; our [[71, 61, d ≥ 3]]5 code can be compared
with distance three codes obtained by shortening Hamming codes.
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Table 1: Code Comparison
Our CSS codes CSS codes in [1]

[[n, k, d]]q [[n
′
, k

′
, d

′
]]q

[[40, 30, d ≥ 4]]9 [[40, 28, d
′ ≥ 4]]9

[[40, 20, d ≥ 7]]9 —
[[30, 7, d ≥ 8]]11 —

[[61, 55, d ≥ 3]]13 [[61, 49, d
′ ≥ 3]]13

[[84, 74, d ≥ 4]]13 [[84, 72, d
′ ≥ 4]]13

[[84, 70, d ≥ 5]]13 [[84, 68, d
′ ≥ 5]]13

[[84, 66, d ≥ 6]]13 [[84, 64, d
′ ≥ 6]]13

[[91, 85, d ≥ 3]]16 [[91, 79, d
′ ≥ 3]]16

[[144, 126, d ≥ 6]]17 [[144, 124, d
′ ≥ 6]]17

[[144, 122, d ≥ 7]]17 [[144, 120, d
′ ≥ 7]]17

[[144, 118, d ≥ 8]]17 [[144, 116, d
′ ≥ 8]]17

[[127, 121, d ≥ 3]]19 [[127, 115, d
′ ≥ 3]]19

Table 2: Code Comparison
Our CSS codes q-ary Steane’s construction

[[n, k, d]]q [[n
′′
, k

′′
, d

′′
]]q

[[19, 13, d ≥ 3]]7 —
[[13, 7, d ≥ 3]]9 —

[[19, 13, d ≥ 3]]11 —

[[61, 55, d ≥ 3]]13 [[61, 52, d
′′ ≥ 3]]13

[[91, 85, d ≥ 3]]16 [[91, 82, d
′′ ≥ 3]]16

[[127, 121, d ≥ 3]]19 [[127, 118, d
′′ ≥ 3]]19

[[13, 5, d ≥ 3]]5 —
[[13, 5, d ≥ 3]]8 —
[[13, 7, d ≥ 3]]3 —
[[43, 31, d ≥ 3]]7 —
[[73, 61, d ≥ 3]]9 —

[[1093, 1079, d ≥ 3]]3 [[1093, 1072, d
′′ ≥ 3]]3
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Table 3: Code Comparison
Our CSS codes CSS codes in [1]

[[n, k, d]]q [[n
′
, k

′
, d

′
]]q

[[11, 1, d ≥ 4]]3 —
[[13, 1, d ≥ 4]]3 —

[[1093, 1079, d ≥ 3]]3 [[1093, 1065, d
′ ≥ 3]]3

[[31, 19, d ≥ 4]]5 [[31, 13, d
′ ≥ 4]]5

[[31, 13, d ≥ 5]]5 [[31, 7, d
′ ≥ 5]]5

[[71, 61, d ≥ 3]]5 [[71, 51, d
′ ≥ 3]]5

[[71, 51, d ≥ 4]]5 [[71, 41, d
′ ≥ 4]]5

[[73, 61, d ≥ 4]]8 [[73, 55, d
′ ≥ 4]]8

[[73, 55, d ≥ 5]]8 [[73, 49, d
′ ≥ 5]]8

[[73, 49, d ≥ 6]]8 [[73, 43, d
′ ≥ 6]]8

[[73, 43, d ≥ 7]]8 [[73, 37, d
′ ≥ 7]]8

Table 4: Code Comparison
Our CSS codes Steane’s code construction

[[n, k, d]]q [[n
′′
, k

′′
, d

′′
]]q: L,L

′

[[31, 19, d ≥ 4]]5 [[31, 16, d
′′ ≥ 4]]5: [31, 22, 4]5, [31, 25, 3]5

[[31, 13, d ≥ 5]]5 [[31, 10, d
′′ ≥ 5]]5: [31, 19, 5]5, [31, 22, 4]5

[[73, 61, d ≥ 4]]8 [[73, 58, d
′′ ≥ 4]]8: [73, 64, 4]8, [73, 67, 3]8

[[73, 55, d ≥ 5]]8 [[73, 52, d
′′ ≥ 5]]8: [73, 61, 5]8, [73, 64, 4]8

[[73, 49, d ≥ 6]]8 [[73, 46, d
′′ ≥ 6]]8: [73, 58, 6]8, [73, 61, 5]8

[[73, 43, d ≥ 7]]8 [[73, 40, d
′′ ≥ 7]]8: [73, 55, 7]8, [73, 58, 6]8

Table 5: Code Comparison
Our codes (Construction III) Steane’s code construction

[[n, k, d]]q [[n
′′
, k

′′
, d

′′
]]q

[[31, 22, d ≥ 4]]5 [[31, 16, d
′′ ≥ 4]]5

[[31, 16, d ≥ 5]]5 [[31, 10, d
′′ ≥ 5]]5

[[71, 56, d ≥ 4]]5 [[71, 46, d
′′ ≥ 4]]5

[[73, 64, d ≥ 4]]8 [[73, 58, d
′′ ≥ 4]]8

[[73, 58, d ≥ 5]]8 [[73, 52, d
′′ ≥ 5]]8

[[40, 36, 3]]9 (MDS)
[[60, 56, 3]]11 (MDS)
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Table 6: Code Comparison
Our Hermitian Codes (Construction IV) Hermitian Codes in [1]

[[n, k, d]]q [[n
′
, k

′
, d

′
]]q

[[17, 13, 3]]4 (MDS)
[[17, 9, 5]]4 (MDS)
[[13, 9, 3]]5 (MDS)

[[312, 298, d ≥ 5]]5 [[312, 296, d
′ ≥ 5]]5

[[312, 294, d ≥ 6]]5 [[312, 292, d
′ ≥ 6]]5

[[312, 290, d ≥ 7]]5 [[312, 288, d
′ ≥ 7]]5

[[312, 286, d ≥ 8]]5 [[312, 284, d
′ ≥ 8]]5

[[312, 282, d ≥ 9]]5 [[312, 280, d
′ ≥ 9]]5

[[312, 278, d ≥ 10]]5 [[312, 276, d
′ ≥ 10]]5

[[312, 274, d ≥ 11]]5 [[312, 272, d
′ ≥ 11]]5

[[312, 270, d ≥ 12]]5 [[312, 268, d
′ ≥ 12]]5

[[144, 128, d ≥ 5]]7 [[144, 120, d ≥ 5]]7
[[144, 122, d ≥ 6]]7 [[144, 114, d ≥ 6]]7
[[144, 116, d ≥ 7]]7 [[144, 108, d ≥ 7]]7
[[144, 114, d ≥ 8]]7 [[144, 102, d ≥ 8]]7
[[144, 108, d ≥ 9]]7 [[144, 96, d ≥ 9]]7
[[144, 102, d ≥ 10]]7 [[144, 90, d ≥ 10]]7
[[144, 100, d ≥ 11]]7 [[144, 84, d ≥ 11]]7

The codes [[67, 61, d ≥ 3]]29 and [[73, 67, d ≥ 3]]64 shown in Table 7 have
parameters satisfying n + 2 − k − 2d ≤ 2; the parameters of the codes
[[11, 1, d ≥ 4]]5, [[35, 27, d ≥ 3]]13 and [[35, 27, d ≥ 3]]27, satisfy n+2−k−2d ≤
4. The [[11, 1, d ≥ 4]]5 code is comparable to the [[17, 9, 4]]5 code shown in [5],
and the [[61, 51, d ≥ 3]]9 code is comparable to the [[65, 51, 4]]9 code shown
in [5].

5.2 BCH codes - part II

In this section we construct more families of quantum codes derived from
BCH codes. The codes constructed here can be found in our paper [10].

The first construction generates quantum codes with parameters

(i) [[n, n− 4(c− 2)− 2, d ≥ c]]q, where n = q4 − 1, and 3 ≤ c ≤ q2;

The second one produces codes with parameters
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Table 7: Our quantum codes
Parameters of the new codes

[[11, 1, d ≥ 4]]5
[[19, 1, d ≥ 5]]17
[[35, 27, d ≥ 3]]13
[[35, 27, d ≥ 3]]27
[[35, 19, d ≥ 4]]27
[[51, 35, d ≥ 3]]32
[[61, 51, d ≥ 3]]9
[[63, 51, d ≥ 3]]11
[[63, 39, d ≥ 4]]11
[[63, 51, d ≥ 3]]23
[[63, 45, d ≥ 4]]23
[[67, 61, d ≥ 3]]29
[[73, 67, d ≥ 3]]64
[[73, 61, d ≥ 4]]64

(ii) [[n, n− 2mc− 2, d ≥ c+ 2]]q, for all 1 ≤ c ≤ q2 − 2;

(iii) [[n, n− 2m(q2 − 1)− 2, d ≥ q2 + 2]]q;

(iv) [[n, n− 2m(c− 1)− 2, d ≥ c+ 2]]q, for all q2 + 1 ≤ c ≤ 2q2 + 2;

(v) [[n, n− 4m(q2 − 1)− 2, d ≥ 2q2 + 2]]q, for all q2 + 1 ≤ c ≤ 2q2 + 2,

where n = q2m − 1, q ≥ 4 is a prime power, and m = ordn(q2) ≥ 3.

The third construction generates families of quantum codes with param-
eters

(vi) [[n, n−m(2c− 1)− 2, d ≥ c+ 2]]q, for all 1 ≤ c ≤ q − 2;

(vii) [[n, n−m(2q − 3)− 2, d ≥ q + 1]]q;

(viii) [[n, n−m(2q − 1)− 1, d ≥ q + 3]]q;

(ix) [[n, n−m(2c− 4)− 2, d ≥ c+ 2]]q;

(x) [[n, n−m(4q − 8)− 2, d ≥ 2q]]q;

(xi) [[n, n−m(4q − 5)− 2, d ≥ 2q + 2]]q, where q + 1 < c < 2q − 2;
where n = qm − 1, q ≥ 4 is a prime power, and m = ordn(q) ≥ 3.
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We need to recall three useful lemmas from [1].

Lemma 5.7 [1, Lemma 1] Assume that gcd(q, n) = 1. A cyclic code of length
n over Fq with defining set Z contains its Euclidean dual code if and only if
Z ∩ Z−1 = ∅, where Z−1 = {−zmodn|z ∈ Z}.

Lemma 5.8 Assume that gcd(q, n) = 1. A cyclic code of length n over Fq2
with defining set Z contains its Hermitian dual code if and only if Z ∩Z−q =
∅, where Z−q = {−qzmodn|z ∈ Z}.

Lemma 5.9 (Hermitian Construction) If there exists a classical linear [n, k,
d]q2 code D such that D⊥H ⊂ D, then there exists an [[n, 2k − n, ≥ d]]q
stabilizer code that is pure to d. If the minimum distance d⊥H of D⊥H exceeds
d, then the stabilizer code is pure and has minimum distance d.

We utilize the notation C[a] to denote the cyclotomic coset containing a,
where a is not necessarily the smallest number in C[a].

5.2.1 Construction I: Codes of length q4 − 1 over Fq2

Let us prove the first result.

Lemma 5.10 Let n = q4−1, where q ≥ 3 is a prime power, and consider the
first q2 − 1 q2-ary cosets modulo n given by

C[q2+1],

C[q2+2] = {q2 + 2, 1 + 2q2},
...

C[2q2−1] = {2q2 − 1, 1 + (q2 − 1)q2}.

Then the following hold:

(a) C[q2+1] contains only one element;

(b) each of the other cosets contains two elements;

(c) each of these cosets are mutually disjoint.

Proof: Note first that the inequality n > 1 + (q2 − 1)q2 holds.

(a) This follows from the fact that (q2 + 1)q2 ≡ q2 + 1 modn.
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(b) We prove that each of the cosets C[q2+2], C[2q2−1] has exactly two el-
ements. To do this, assume that q2 + j ≡ 1 + jq2 modn, where
j = 2, . . . , q2 + 1. Because 1 + jq2 < n, we have q2 + j = 1 + jq2;
hence, j − 1 = (j − 1)q2, which is a contradiction.

(c) It is clear that coset C[q2+1] is disjoint of the other cosets, since it
has only one element. Assume next that C[q2+i] = C[q2+j], where 2 ≤
i, j ≤ q2 − 1, where i 6= j, Thus either q2 + i ≡ q2 + jmodn or
q2 + i ≡ (q2 +j)q2 modn, where 2 ≤ i, j ≤ q2−1. Since 2q2 +1 < q4−1
and 1+(q2−1)q2 < q4−1 hold, such inequalities imply that q2+i = q2+j
or q2 + i = 1 + jq2. The first case implies i = j, a contradiction, and
the second implies q2|(i− 1), which is also a contradiction. Therefore,
all these cosets are mutually disjoint. The proof is complete.

�

In the sequence we use Lemma 5.10 to show how to construct quantum
codes of length n = q4 − 1.

Theorem 5.12 Let q ≥ 3 be a prime power and n = q4−1. Then there exists
an [[n, n− 4(q2 − 2)− 2, d ≥ q2]]q quantum error-correcting code.

Proof: Let us consider C as the cyclic code generated by the product of the
minimal polynomials

g(x) = M (q2+1)(x)M (q2+2)(x) · . . . ·M (q2+j)(x),

where 1 ≤ j ≤ q2 − 1. We show first that C is Hermitian dual-containing.
Seeking a contradiction, we suppose Z

⋂
Z−q 6= ∅. Thus there exist i, j,

where 1 ≤ i, j ≤ q2 − 1 such that C[q2+j] = C[−q(q2+i)]. Hence, q2 + j ≡
−q(q2+i)q2k, where k = 0 or k = 1. If k = 0, we have q3+qi+q2+j < q4−1,
so q2 + j = −q3 − qi, a contradiction. If k = 1, since gcd(q2, n) = 1 and
q4 ≡ 1 modn, we have

q2 + j ≡ −q3(q2 + i) modn =⇒
q5 + q3i ≡ −(q2 + j) modn =⇒

q + q3i ≡ −(q2 + j) modn,

where 1 ≤ i, j, q2 − 1.
If i < q then iq3+q+q2+j < q4−1, so q+q3i = −(q2+j), a contradiction.

On the other hand, if i ≥ q, from the division algorithm we write i = lq + r,
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where r, l are integers such that 0 ≤ r ≤ q − 1. We also have 0 ≤ l ≤ q − 1;
hence,

q + q3i = q + q3(lq + r) ≡ q + l + q3rmodn.

Computing q + l + q3r + q2 + j we obtain

q + l + q3r + q2 + j < q3(q − 1) + 2q + 2q2 = q4 − q3 + 2q + 2q2.

Since q3 > 2q2 + 2q + 1, it follows that q + l + q3r + q2 + j < q4 − 1; hence,
q + l + q3r = −q2 − j, a contradiction. Consequently, C is Hermitian dual
containing.

We next compute the minimum distance and the dimension of C. Since
the defining set of C contains the sequence q2 + 1, q2 + 2, . . . , 2q2 − 1, it
follows from the BCH bound that C has minimum distance greater than or
equal to q2. On the other hand, from Lemma 5.10, the defining set of C has
2(q2 − 2) + 1 elements. Hence, g(x) has degree deg(g(x)) = 2(q2 − 2) + 1, so
C has dimension n− 2(q2− 2)− 1, i.e., C is an [n, n− 2(q2− 2)− 1, d ≥ q2]q2
code. Applying Lemma 5.5, there exists an [[n, n − 4(q2 − 2) − 2, d ≥ q2[]q
quantum code. The proof is complete. �

Corollary 5.5 Let q ≥ 3 be a prime power and n = q4− 1. Then there exists
an [[n, n− 4(c− 2)− 2, d ≥ c[]q, where 3 ≤ c ≤ q2 − 1

Proof: It suffices to consider C as the cyclic code generated by

M (q2+1)(x)M (q2+2)(x) · . . . ·M (q2+c−1)(x),

after proceeding similarly to the proof of Theorem 5.12. �

Example 5.9 As an example, let us consider m = 2 and q = 3. Let C be gen-
erated by M (10)(x)M (11)(x). Applying Theorem 5.12 we have an [[80, 74, d ≥
3]]3 code.

5.2.2 Construction II: Hermitian non-narrow-sense
BCH codes

In this subsection we construct suitable Hermitian dual-containing non-narrow-
sense BCH codes with good parameters in order to obtain good quantum
codes derived from them.

We start with the following result.
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Lemma 5.11 Let q 6= 2 be a prime power and n = q2m − 1, where m =

ordn(q2) ≥ 3. If s =
m−1∑
i=0

(q2)
i
, then the q2-coset C[s] has only one element.

Proof: We know that gcd(q2, n) = 1 and q2m ≡ 1 modn. The result follows
from direct computation.

sq2j =

(
m−1∑
i=0

(q2)
i

)
q2j

= q2j(q2)
m−1

+ q2j(q2)
m−2

+ · · ·+ q2jq2 + q2j =

= q2jq2mq−2 + q2jq2mq−4 + · · ·+ q2jq2mq−2j+2 +

+ q2jq2mq−2j + q2jq2mq−2j−2 + · · ·+ q2jq2 + q2j

≡ (modn)q2jq−2 + q2jq−4 + · · ·+ q2jq−2j+2 +

+ q2jq−2j + q2m−2 + q2m−4 + · · ·+ q2jq2 + q2j =

= (q2)
m−1

+ (q2)
m−2

+ · · ·+ (q2)
j+1

+ (q2)
j

+

+ (q2)
j−1

+ (q2)
j−2

+ · · ·+ q2 + 1 =

=
m−1∑
i=0

(q2)
i

= s

�

Lemma 5.12 Let q 6= 2 be a prime power and n = q2m − 1, where m =

ordn(q2) ≥ 3. Let s =
m−1∑
i=0

(q2)
i
. Then the following results hold:

(a) the q2-ary cosets of the form C[s+i] are mutually disjoints, where 1 ≤
i ≤ q2 − 1;

(b) the q2-ary cosets of the form C[s−j] are mutually disjoints, where 1 ≤
j ≤ q2 − 1;

(c) the q2-ary cosets of the form C[s+i] are mutually disjoints with the q2-
ary cosets of the form C[s−j], where 1 ≤ i, j ≤ q2 − 1.

Proof: We only show Item (a). Items (b) and (c) are left to the reader.
(a) Assume that there exist i 6= j, where 1 ≤ i, j ≤ q2 − 1 such that

C[s+i] = C[s+j]. The there exists 0 ≤ t ≤ m − 1 such that s + i ≡
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(s + j)q2t modn. From Lemma 5.11, we know that sq2t ≡ smodn. Since
gcd(q2, n) = 1 and q2m ≡ 1 modn, then one has

s+ i ≡ (s+ j)q2t ≡ s+ jq2t modn

=⇒ i ≡ jq2t modn.

Because 1 ≤ i, j ≤ q2 − 1, it follows that

i ≡ jq2t modn =⇒ i = jq2t.

If t = 0, then i = j, a contradiction; if t ≥ 1, the equality i = jq2t does not
hold. Therefore, it follows that the cosets C[s+i] and C[s+j] are disjoint. The
proof is complete. �

Lemma 5.13 Let q ≥ 4 be a prime power and n = q2m − 1, where m =

ordn(q2) ≥ 3. Let s =
m−1∑
i=0

(q2)
i
. Then the following hold:

(a) the cosets of the form C[s+i], where 1 ≤ i ≤ q2−1, contain m elements;

(b) the cosets of the form C[s−j], 1 ≤ j ≤ q2 − 1, contain m elements.

Proof: We prove Item (a). Item (b) is left as exercise.
(a) The elements of C[s+i] are of the form (s+i)q2t, where 0 ≤ t ≤ m−1 for

all 1 ≤ i ≤ q2 − 1. Since gcd(q2, n) = 1, q2m ≡ 1 modn and sq2t ≡ smodn,
it follows that

(s+ i)q2t ≡ s+ iq2t modn.

Let us consider that 0 ≤ t ≤ m− 2. We then have

s+ iq2t

< (q2m − 1)/(q2 − 1) + q2m−2

≤ (q2m − 1)/15 + (q2m − 1)/15

< q2m − 1.

Hence, the first m − 1 elements belonging to C[s+i] are distinct, for all
1 ≤ i ≤ q2−1, i.e., the cosets C[s+i] containm elements, becausem−1 > m/2.
�
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Lemma 5.14 Let q ≥ 4 be a prime power and n = q2m − 1, where m =

ordn(q2) ≥ 3. Let s =
m−1∑
i=0

(q2)
i
. If C is the cyclic code generated by the

product of the minimal polynomials

M (s)(x)M (s+1)(x) · · ·M (s+i)(x)M (s−1)(x) · · ·M (s−j)(x),

where 1 ≤ i, j ≤ q2 − 1, then C is Hermitian dual-containing.

Proof: According to Lemma 5.4,we have to show that Z
⋂
Z−q = ∅. Forcing

a contradiction, we assume that Z
⋂
Z−q 6= ∅. The cases concerning the coset

C[s] are immediate. Assume first that C[s+j] = C[−q(s+i)], 1 ≤ i, j ≤ q2 − 1.
Then there exists 0 ≤ h ≤ m− 1 such that

s+ j ≡ −q(s+ i)q2h modn.

Because gcd(q2, n) = 1, q2m ≡ 1 modn and sq2t ≡ smodn for all 0 ≤ t ≤
m− 1, we obtain

s+ j ≡ −qs− qiq2h modn,

where 0 ≤ h ≤ m − 1. We now compute the expression s + j + q(s + iq2h),
0 ≤ h ≤ m− 1. If h ≤ m− 2, one has

s+ j + q(s+ iq2h)

≤ q2m − 1

q2 − 1
+ j + q

q2m − 1

q2 − 1
+ iq2m−3

≤ q2m − 1

q − 1
+ (q2 − 1)(1 + q2m−3).

It is easy to see that

q2m − 1

q − 1
+ (q2 − 1)(1 + q2m−3) < q2m − 1.

Since s+ j = −qs− iq2h+1 does not hold, we have a contradiction.
If h = m−1, we will verify the equivalence s+ j ≡ −q(s+ i)q2m−2 modn:

s+ j ≡ −q(s+ i)q2m−2 modn

=⇒ j(q2 − 1) ≡ −iq2m−1(q2 − 1) modn

=⇒ (j + iq2m−1)(q2 − 1) ≡ 0 modn.
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Applying the algorithm of division for i and q we have i = aq + r, where
0 ≤ r < q. Because 1 ≤ i ≤ q2 − 1 we also have 0 ≤ a < q; hence,

(j + iq2m−1)(q2 − 1)

≡ [j + (aq + r)q2m−1](q2 − 1)

≡ (j + a)(q2 − 1) + r(q2 − 1)q2m−1

≡ (j + a)(q2 − 1) + rq − rq2m−1 ≡ 0 modn

=⇒ rq2m−1 − rq − (j + a)(q2 − 1) ≡ 0 modn.

If r = 0, it follows that (j+a)(q2−1) < q2m−1, so (j+a)(q2−1) 6≡ 0 modn.
If r > 0, then 0 < rq2m−1 − rq − (j + a)(q2 − 1) < q2m − 1, which is a
contradiction.

The cases C[s+j] = C[−q(s−i)], C[s−j] = C[−q(s+i)] and C[s−j] = C[−q(s−i)]
are analogous to the previous one, so the proof is omitted. Therefore, C is
Hermitian dual-containing, as required. �

Theorem 5.13 given in the following is the main result of this subsection.

Theorem 5.13 Let q ≥ 4 be a prime power and n = q2m − 1, where m =
ordn(q2) ≥ 3. Then there exists an [[n, n − 4m(q2 − 1) − 2, d ≥ q2 + 2]]q
quantum error-correcting code.

Proof: Let C be the cyclic code generated by

M (s)(x)M (s+1)(x) · . . . ·M (s+q2−1)(x)M (s−1)(x) · . . . ·M (s−q2+1)(x).

From Lemmas 5.12 and 5.13, it is easy to see that C is an [n, n−2m(q2−1)−
1, d ≥ 2q2 + 2]q2 code. From Lemma 5.14, C is Hermitian dual containing.

Applying the Hermitian construction, an [[n, n−4m(q2−1)−2, d ≥ 2q2+2]]q
quantum code can be constructed. The proof is complete. �

Corollary 5.6 Let q ≥ 4 be a prime power and n = q2m − 1, where m =
ordn(q2) ≥ 3. Then there exist quantum codes with parameters

• [[n, n− 2mc− 2, d ≥ c+ 2]]q, where 1 ≤ c < q2 − 1;

• [[n, n− 2m(q2 − 1)− 2, d ≥ q2 + 2]]q;

• [[n, n− 2m(c− 1)− 2, d ≥ c+ 2]]q, where q2 + 1 ≤ c ≤ 2q2 − 2.
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5.2.3 Construction III: Euclidean non-narrow-sense
BCH code

The result given in the sequence is analogous to Lemma 5.11.

Lemma 5.15 Let q 6= 2 be a prime power and n = qm − 1, where m =

ordn(q) ≥ 3. If s =
m−1∑
i=0

qi, then the q-coset C[s] has only one element.

Proof: Left to exercise. �

The following two results are analogous to Lemmas 5.12 and 5.13, respec-
tively.

Lemma 5.16 Let q ≥ 3 be a prime power and n = qm − 1, where m =

ordn(q) ≥ 3. Let s =
m−1∑
i=0

qi. Then the following are true:

(a) the q-cosets of the form C[s+i] are mutually disjoints, where 1 ≤ i ≤
q − 1;

(b) the q-cosets of the form C[s−j] are mutually disjoints, where 1 ≤ j ≤
q − 1;

(c) the q-cosets of the form C[s+i] are mutually disjoints to the q-cosets of
the form C[s−j], where 1 ≤ i, j ≤ q − 1.

Lemma 5.17 Let q ≥ 4 be a prime power and n = qm − 1, where m =

ordn(q) ≥ 3. Let s =
m−1∑
i=0

qi. Then the following hold:

(a) the cosets of the form C[s+i], where 1 ≤ i ≤ q− 1, contain m elements;

(b) the cosets of the form C[s−j], where 1 ≤ j ≤ q− 1, contain m elements.

Lemma 5.18 Let q ≥ 4 be a prime power and n = qm − 1, where m =

ordn(q) ≥ 3. Let s =
m−1∑
i=0

qi. Let C be the cyclic code generated by

M (s)(x)M (s+1)(x) · . . . ·M (s+j)(x)M (s−1)(x) · . . . ·M (s−j)(x),

where 1 ≤ j ≤ q − 1. Then C is Euclidean dual-containing.
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Proof: From Lemma 5.3, it is sufficient to prove that Z
⋂
Z−1 = ∅. Forcing

a contradiction, we assume the Z
⋂
Z−1 6= ∅. The cases concerning the coset

C[s] are trivial.
(1) Assume first that C[s+i] = C[−(s+j)], where 1 ≤ i, j ≤ q−1. Then there

exists 0 ≤ t ≤ m− 1 such that s + i ≡ −(s + j) modn. Since gcd(q, n) = 1,
qm ≡ 1 modn and sqt ≡ smodn, 0 ≤ t ≤ m− 1, we have

s+ i ≡ −s− jqt modn =⇒ 2s ≡ −(i+ jqt).

If 0 ≤ t ≤ m− 2 and because q ≥ 4, it follows that

2s+ i+ jqt

≤ 2qm − 2

q − 1
+ (q − 1)(1 + qm−2)

< qm − 1

=⇒ 2s+ i+ jqt < qm − 1.

Hence s+ i = −s− jqt, a contradiction.
Let us next consider the case t = m−1. We know that for each 1 ≤ i, j ≤

q−3 we have 2s+ i+jqm−1 < qm−1; since s+ i = −s−jqm−1 does not hold,
this implies in a contradiction. Analogously, if j = q − 3 and 1 ≤ i ≤ q − 1,
it follows that 2s+ i+ jqm−1 < qm − 1, and because s+ i 6= −s− jqm−1, we
have a contradiction.

If j ≥ q−2, we have 2s+i+jqt > qm−1. Let us compute the equivalence
2s ≡ −(i+ jqm−1) modn for j = q − 2 and 1 ≤ i ≤ q − 1.

2s ≡ −[i+ (q − 2)qm−1] modn =⇒ 2s ≡ −i− 1 + 2qm−1 modn.

As 0 < 2s+ i+ 1− 2qm−1 < qm − 1 and also 2s 6= −i− 1 + 2qm−1 are true,
one has a contradiction.

Let j = q − 1 and 1 ≤ i ≤ q − 1. Computing the equivalence 2s ≡
−(i+ jqm−1) modn we obtain

2s ≡ −[i+ (q − 1)qm−1] modn =⇒ 2s ≡ −i− 1 + qm−1 modn.

Because 0 < 2s+ i+ 1− qm−1 < qm − 1 and 2s 6= −i− 1 + qm−1 hold, then
the equivalence 2s ≡ −[i+(q−1)qm−1] modn does not hold, a contradiction.

(2) Suppose C[s−i] = C[−(s−j)], where 1 ≤ i, j ≤ q − 1. Then there exists
0 ≤ t ≤ m− 1 such that s− i ≡ −(s− j)qt modn. We have

s− i ≡ −s+ jqt modn =⇒ 2s ≡ i+ jqt modn.

If 0 ≤ t ≤ m − 2 then the inequalities 2s < qm − 1 and 2s > i + jqt hold,
which is a contradiction. If t = m− 1, then
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2s ≡ i+ jqm−1 modn

=⇒ 2(qm − 1) ≡ (q − 1)(i+ jqm−1) modn

=⇒ (q − 1)i+ (q − 1)jqm−1 ≡ 0 modn

=⇒ (q − 1)i+ j − jqm−1 ≡ 0 modn

=⇒ jqm−1 − i(q − 1)− j ≡ 0 modn.

Since 0 < jqm−1 − i(q − 1)− j < qm − 1, the equivalence 2s ≡ i+ jqt modn
does not hold, a contradiction.

(3) Assume that C[s+i] = C[−(s−j)], where 1 ≤ i, j ≤ q − 1. Then there
exists 0 ≤ t ≤ m−1 such that s+i ≡ −(s−j)qt modn, so 2s ≡ jqt−imodn.
If t = 0 nd i = j we have 2s ≡ 0 modn, a contradiction. If 0 ≤ t ≤ m − 2
and i 6= j, we know that

2s ≡ jqt − imodn =⇒ (q − 1)(jqt − i) ≡ 0 modn;

hence, −(qm − 1) < (q − 1)(jqt − i) < qm − 1 and (q − 1)(jqt − i) 6= 0, a
contradiction.

If t = m− 1, we obtain

(q − 1)(jqm−1 − i) ≡ 0 modn =⇒ jqm−1 + i(q − 1)− j ≡ 0 modn.

Since 0 < jqm−1+i(q−1)−j < qm−1, the equivalence s+i ≡ −(s−j)qt modn
does not hold, a contradiction.

(4) Suppose finally that C[s−i] = C[−(s+j)]; then s− i ≡ −(s+ j)qt modn
for some 0 ≤ t ≤ m− 1. Thus, 2s ≡ i− jqt modn. As in the previous case,
if t = 0 nd i = j we have 2s ≡ 0 modn, a contradiction. If 0 ≤ t ≤ m − 2
and i 6= j we then know that

2s ≡ i− jqt modn =⇒ (q − 1)(i− jqt) ≡ 0 modn,

which is a contradiction. Moreover, it is easy to see that the last equivalence
does not hold, a contradiction.

Therefore, C is Euclidean dual-containing code, as required. The proof
is complete. �

We next recall Corollary 5.2 shown in [6].

Corollary 5.7 Assume that we have an [N0, K0] linear code L which contains
its Euclidean dual, L⊥ ≤ L, and which can be enlarged to an [N0, K

′
0] linear

code L
′
, where K

′
0 ≥ K0 + 2. Then there exists a quantum code with param-

eters [[N0, K0 + K
′
0 − N0, d ≥ min{d, d q+1

q
d

′e}]], where d = w(L\L′⊥
) and

d
′
= w(L

′\L′⊥
).
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We are now ready to state the main results of this subsection.

Theorem 5.14 Let q ≥ 4 be a prime power and n = qm − 1, where m =
ordn(q) ≥ 3. Then there exists an [[n, n−m(2c−1)−2, d ≥ c+2]]q quantum
code, for all 1 ≤ c ≤ q − 2.

Proof: Let C be the cyclic code generated by

M (s)(x)M (s+1)(x) · . . . ·M (s+i)(x)M (s−1)(x) · . . . ·M (s−j)(x),

where 1 ≤ i+ j = c ≤ q− 2. It is easy to see that C is an [n, n−mc− 1, d ≥
c+2]q code, where 1 ≤ c ≤ q−2. Moreover, from Lemma 5.3, C is Euclidean
dual-containing.

Let C
′

be the code generated by

M (s)(x)M (s+1)(x) · . . . ·M (s+i)(x)M (s−1)(x) · . . . ·M (s−j+1)(x).

We know that C
′

is an enlargement of C and has parameters [n, n−m(c−
1) − 1, d

′ ≥ c + 1]q. Applying Corollary 5.2 to C and C
′

we obtain an
[[n, n−m(2c− 1)− 2, d ≥ c+ 2]]q code, as required. The proof is complete.
�

Theorem 5.15 Let q ≥ 4 be a prime power and n = qm − 1, where m =
ordn(q) ≥ 3. Then there exist quantum codes with parameters

• [[n, n−m(2q − 3)− 2, d ≥ q + 1]]q;

• [[n, n−m(2q − 1)− 1, d ≥ q + 3]]q;

• [[n, n−m(2c− 4)− 2, d ≥ c+ 2]]q;

• [[n, n−m(4q − 8)− 2, d ≥ 2q]]q;

• [[n, n−m(4q − 5)− 2, d ≥ 2q + 2]]q, where q + 1 < c < 2q − 2.

We now compare the parameters of our codes with the ones shown in the
literature

In Table 8, our Hermitian quantum codes have parameters [[n, n− 4(c−
2) − 2, d ≥ c]]q, where 3 ≤ c ≤ q2 and n = q4 − 1; [[n

′
, k

′
, d

′
]]q = [[n

′
, n

′ −
2md(δ−1)(1−1/q2)e, d′ ≥ δ]]q are the parameters of the Hermitian quantum

codes shown in Theorem 21 in [1], where m = ordn(q2) = 2 and 2 ≤ δ ≤
bn(qm − 1)/(q2m − 1)c.

In Table 9, our quantum codes are obtained from Subsection 5.2.2 and
have parameters [[n, k, d]]q given by
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• [[n, n− 2mc− 2, d ≥ c+ 2]]q, where 1 ≤ c < q2 − 1;

• [[n, n− 2m(q2 − 1)− 2, d ≥ q2 + 2]]q;

• [[n, n− 2m(c− 1)− 2, d ≥ c+ 2]]q, where q2 + 1 ≤ c ≤ 2q2 − 2.

• [[n, n − 4m(q2 − 1) − 2, d ≥ 2q2 + 2]]q, where n = q2m − 1, q ≥ 4 is a

prime power, m = ordn(q2) ≥ 3;

[[n
′
, k

′
, d

′
]]q = [[n

′
, n

′−2md(δ−1)(1−1/q2)e, d′ ≥ δ]]q are the parameters
of the Hermitian quantum codes shown in Theorem 21 in [1], where m =
ordn(q2) ≥ 3 and 2 ≤ δ ≤ bn(qm − 1)/(q2m − 1)c.

In Table 10, our codes are derived from Subsection 5.2.3 and have pa-
rameters [[n, k, d]]q given by

• [[n, n−m(2c− 1)− 2, d ≥ c+ 2]]q, where 1 ≤ c ≤ q − 2;

• [[n, n−m(2q − 3)− 2, d ≥ q + 1]]q;

• [[n, n−m(2q − 1)− 1, d ≥ q + 3]]q;

• [[n, n−m(2c− 4)− 2, d ≥ c+ 2]]q;

• [[n, n−m(4q − 8)− 2, d ≥ 2q]]q;

• [[n, n−m(4q − 5)− 2, d ≥ 2q + 2]]q, where q + 1 < c < 2q − 2.

The parameters [[n
′′
, k

′′
, d

′′
]]q are the parameters of quantum BCH codes

derived from q-ary Steane’s construction (see Corollary 5.2) applied to narrow-
sense BCH codes. These codes were obtained by the same method presented
in Table I in [16] by considering the criterion for classical Euclidean dual-
containing BCH codes of Theorems 3 and 5 in [1].

As we can see in Tables 8 to 10, according to the procedure described
in Remark 5.2, our quantum codes have parameters better than the ones
exhibited in the literature.
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Table 8: Code Comparison
Our Hermitian codes Hermitian codes in [1]

[[n, n− 4(c− 2)− 2, d ≥ c]]q [[n
′
, k

′
, d

′
]]q

m = 2, q = 3

[[80, 74, d ≥ 3]]3 [[80, 72, d
′ ≥ 3]]3

[[80, 70, d ≥ 4]]3 [[80, 68, d
′ ≥ 4]]3

[[80, 66, d ≥ 5]]3 [[80, 64, d
′ ≥ 5]]3

[[80, 62, d ≥ 6]]3 [[80, 60, d
′ ≥ 6]]3

[[80, 58, d ≥ 7]]3 [[80, 56, d
′ ≥ 7]]3

[[80, 54, d ≥ 8]]3 [[80, 52, d
′ ≥ 8]]3

[[80, 50, d ≥ 9]]3
m = 2, q = 4

[[255, 249, d ≥ 3]]4 [[255, 247, d
′ ≥ 3]]4

[[255, 245, d ≥ 4]]4 [[255, 243, d
′ ≥ 4]]4

[[255, 241, d ≥ 5]]4 [[255, 239, d
′ ≥ 5]]4

[[255, 237, d ≥ 6]]4 [[255, 235, d
′ ≥ 6]]4

[[255, 233, d ≥ 7]]4 [[255, 231, d
′ ≥ 7]]4

[[255, 229, d ≥ 8]]4 [[255, 227, d
′ ≥ 8]]4

[[255, 225, d ≥ 9]]4 [[255, 223, d
′ ≥ 9]]4

[[255, 221, d ≥ 10]]4 [[255, 219, d
′ ≥ 10]]4

[[255, 217, d ≥ 11]]4 [[255, 215, d
′ ≥ 11]]4

[[255, 213, d ≥ 12]]4 [[255, 211, d
′ ≥ 12]]4

[[255, 209, d ≥ 13]]4 [[255, 207, d
′ ≥ 13]]4

[[255, 205, d ≥ 14]]4 [[255, 203, d
′ ≥ 14]]4

[[255, 201, d ≥ 15]]4 [[255, 199, d
′ ≥ 15]]4

[[255, 197, d ≥ 16]]4
m = 2, q = 5

[[624, 618, d ≥ 3]]5 [[624, 616, d
′ ≥ 3]]5

[[624, 614, d ≥ 4]]5 [[624, 612, d
′ ≥ 4]]5

[[624, 610, d ≥ 5]]5 [[624, 608, d
′ ≥ 5]]5

[[624, 606, d ≥ 6]]5 [[624, 604, d
′ ≥ 6]]5

[[624, 602, d ≥ 7]]5 [[624, 600, d
′ ≥ 7]]5

[[624, 598, d ≥ 8]]5 [[624, 596, d
′ ≥ 8]]5

[[624, 594, d ≥ 9]]5 [[624, 592, d
′ ≥ 9]]5

[[624, 590, d ≥ 10]]5 [[624, 588, d
′ ≥ 10]]5

[[624, 586, d ≥ 11]]5 [[624, 584, d
′ ≥ 11]]5

[[624, 582, d ≥ 12]]5 [[624, 580, d
′ ≥ 12]]5
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Table 9: Code Comparison
Our Hermitian codes Hermitian codes in [1]

[[n, k, d]]q [[n
′
, k

′
, d

′
]]q

m = 3, q = 4

[[4095, 4087, d ≥ 3]]4 [[4095, 4083, d
′ ≥ 3]]4

[[4095, 4081, d ≥ 4]]4 [[4095, 4077, d
′ ≥ 4]]4

[[4095, 4075, d ≥ 5]]4 [[4095, 4071, d
′ ≥ 5]]4

[[4095, 4069, d ≥ 6]]4 [[4095, 4065, d
′ ≥ 6]]4

[[4095, 4063, d ≥ 7]]4 [[4095, 4059, d
′ ≥ 7]]4

[[4095, 4057, d ≥ 8]]4 [[4095, 4053, d
′ ≥ 8]]4

[[4095, 4051, d ≥ 9]]4 [[4095, 4047, d
′ ≥ 9]]4

[[4095, 4045, d ≥ 10]]4 [[4095, 4041, d
′ ≥ 10]]4

[[4095, 4039, d ≥ 11]]4 [[4095, 4035, d
′ ≥ 11]]4

[[4095, 4033d ≥ 12]]4 [[4095, 4029, d
′ ≥ 12]]4

[[4095, 4027, d ≥ 13]]4 [[4095, 4023, d
′ ≥ 13]]4

[[4095, 4021, d ≥ 14]]4 [[4095, 4017, d
′ ≥ 14]]4

[[4095, 4015, d ≥ 15]]4 [[4095, 4011, d
′ ≥ 15]]4

[[4095, 4009, d ≥ 16]]4 [[4095, 4005, d
′ ≥ 16]]4

[[4095, 4003, d ≥ 18]]4 [[4095, 3999, d
′ ≥ 18]]4

[[4095, 3997, d ≥ 19]]4 [[4095, 3993, d
′ ≥ 19]]4

[[4095, 3949, d ≥ 27]]4 [[4095, 3945, d
′ ≥ 27]]4

[[4095, 3925, d ≥ 31]]4 [[4095, 3921, d
′ ≥ 31]]4

[[4095, 3919, d ≥ 32]]4 [[4095, 3915, d
′ ≥ 32]]4

[[4095, 3913, d ≥ 34]]4 [[4095, 3909, d
′ ≥ 34]]4
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Table 10: Code Comparison
Our codes - construction III Codes derived from [6]

[[n, k, d]]q [[n
′′
, k

′′
, d

′′
]]q

m = 3, q = 4

[[63, 58, d ≥ 3]]4 [[63, 54, d
′ ≥ 4]]4

[[63, 52, d ≥ 4]]4 [[63, 48, d
′ ≥ 4]]4

[[63, 41, d ≥ 7]]4 [[63, 39, d
′ ≥ 7]]4

[[63, 28, d ≥ 10]]4 [[63, 24, d
′ ≥ 10]]4

m = 3, q = 5

[[124, 119, d ≥ 3]]5 [[124, 115, d
′ ≥ 3]]5

[[124, 113, d ≥ 4]]5 [[124, 109, d
′ ≥ 4]]5

[[124, 107, d ≥ 5]]5 [[124, 103, d
′ ≥ 5]]5

[[124, 96, d ≥ 8]]5 [[124, 94, d
′ ≥ 8]]5

[[124, 92, d ≥ 9]]5 [[124, 88, d
′ ≥ 9]]5

[[124, 86, d ≥ 10]]5 [[124, 82, d
′ ≥ 10]]5

[[124, 77, d ≥ 12]]5 [[124, 73, d
′ ≥ 12]]5

m = 3, q = 7

[[342, 337, d ≥ 3]]7 [[342, 333, d
′ ≥ 3]]7

[[342, 331, d ≥ 4]]7 [[342, 327, d
′ ≥ 4]]7

[[342, 325, d ≥ 5]]7 [[342, 321, d
′ ≥ 5]]7

[[342, 319, d ≥ 6]]7 [[342, 315, d
′ ≥ 6]]7

[[342, 313, d ≥ 7]]7 [[342, 309, d
′ ≥ 7]]7

[[342, 302, d ≥ 10]]7 [[342, 300, d
′ ≥ 10]]7

[[342, 298, d ≥ 11]]7 [[342, 294, d
′ ≥ 11]]7

[[342, 292, d ≥ 12]]7 [[342, 288, d
′ ≥ 12]]7

[[342, 286, d ≥ 13]]7 [[342, 282, d
′ ≥ 13]]7

[[342, 271, d ≥ 16]]7 [[342, 267, d
′ ≥ 16]]7

m = 4, q = 4

[[255, 249, d ≥ 3]]4 [[255, 243, d
′ ≥ 3]]4

[[255, 241, d ≥ 4]]4 [[255, 235, d
′ ≥ 4]]4

[[255, 226, d ≥ 7]]4 [[255, 223, d
′ ≥ 7]]4

[[255, 209, d ≥ 10]]4 [[255, 203, d
′ ≥ 10]]4

m = 4, q = 5

[[624, 618, d ≥ 3]]5 [[624, 612, d
′ ≥ 3]]5

[[624, 610, d ≥ 4]]5 [[624, 604, d
′ ≥ 4]]5

[[624, 602, d ≥ 5]]5 [[624, 596, d
′ ≥ 5]]5

[[624, 587, d ≥ 8]]5 [[624, 584, d
′ ≥ 8]]5

[[624, 582, d ≥ 9]]5 [[624, 576, d
′ ≥ 9]]5

[[624, 574, d ≥ 10]]5 [[624, 568, d
′ ≥ 10]]5

[[624, 562, d ≥ 12]]5 [[624, 556, d
′ ≥ 12]]5
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