Teoria da Informação Erro-Zero

Francisco M. de Assis

DEE - UFCG - IQuanta

Alfenas, Agosto 2022

= 990

- 2 Teoria da Informação Erro-Zero Clássica
- 3 Teoria da Informação Erro-Zero Quântica
- 4 Resultados Recentes

-

Preliminares

三日 のへの

Teoria da Informção "Ordinária"

1948

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist' and Hartley⁴ on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have *meaning*; that is they refer to or are

> Published in The Bell, System Technical Journal Vol. 27, pp. 379-423, 623-656, July, October, 1948 Copyright 1948 by American Telephone and Telegraph Co. Printed in U. S. A.

Uma Aplicação Notável da AEP

Revisita à LFGN:

(média amostral)
$$\frac{1}{n} \sum_{i=1}^{n} X_n \xrightarrow{}_{\text{prob.}} \mathbb{E}X$$
 (média estatística)

Entropia Amostral:

$$\widehat{H} = \frac{1}{n} \log \frac{1}{p(X_1, X_2, \dots, X_n)} \longrightarrow H(X)$$

Note que para qualquer destas sequências temos:

 $p(X_1, X_2, \dots, X_n) \approx 2^{-nH}$ UMA CONSTANTE!

Duas classes de sequências:

(DEE - UFCG -

$$\mathcal{X}^{n} = \underbrace{A_{\epsilon}^{(n)}}_{\text{típico}:\widehat{H}\approx H(X)} \cup \underbrace{\overline{A_{\epsilon}^{(n)}}}_{\text{não-típico}:\widehat{H}\neq H(X)}$$

AEP em Imagens

Teorema da Codificação de Fontes (1948): $X_1, X_2, \ldots X_n \sim p(x)$ i.i.d.:

$$\mathsf{x} \in A_{\epsilon}^{(n)} \hspace{0.1in} \leftarrow \hspace{0.1in} c(\mathsf{x}): \mathit{n}(H+\epsilon)+2 \hspace{0.1in}$$
 bits (rótulo + índice)

 $x \notin A_{\epsilon}^{(n)} \leftarrow c(x) : n \log |\mathcal{X}| + 2 \text{ bits (rótulo + índice)}$

ELE NOR

Consequências da AEP para canais DMC

$$M(n) \approx \frac{2^{H(Y)}}{2^{H(Y|X)}}$$

$$C \approx \frac{\log(M(n))}{n} = H(Y) - HY|X)$$

(DEE - UFCG - IQuanta)

WECIQ 2022

-

Capacidade Ordinária de um Canal de Comunicações

 Existem códigos de blocos de comprimento arbitrariamente longos gerados aleatoriamente tais que utilizados na transmissão através de um canal de comunicações permitem fazer a probabilidade de erro arbitrariamente pequena desde que sua taxa seja limitada pela capacidade do canal este um escalar determinado pela estatística do canal.

Neste contexto:

- O sentido da expressão **transmissão confiável** é o de probabilidade de erro arbitrariamente pequena, não necessariamente igual a zero.
- A capacidade para esta concepção assintótica é chamada **capacidade ordinária** do canal de comunicações.

Aplicações para Sistema de Comunicações Ponto-a-Ponto

(DEE - UFCG - IQuanta)

WECIQ 2022

Alfenas, Agosto 2022 9 / 73

Fenomenologia dos Sistemas de Comunicações Ponto-a-Ponto

Transmissor $A: V \to X$. Receptor $B: Y \to \hat{V}$. Ocorre erro se: $\hat{V} \neq V$

- A comunicação entre agentes *A* e *B* significa que seleções de processos físicos por *A* induz estados "medidos" por *B*. A comunicação é bem sucedida se o destinatário *B* e o emissor *A* concordam sobre a mensagem enviada.
- A transferência de informação é um processo físico e portanto sujeito ao ruído e outras imperfeições do processo de sinalização.

(DEE - UFCG - IQuanta)

10 / 73

- A natureza especifíca do sistema físico utilizado para a comunicação é muito variada sendo considerar um modelo matemático para o processo (Figura).
- Um dos problemas centrais da teoria da informação é determinar número máximo de sinais distinguíveis podem ser transmitidos em *n* usos do canal.

 Note que o número de sinais, M(n) aumenta exponencialmente com n.

Notação e Definições

- Fonte: seleciona uma mensagem $V \in_{i.i.d.} \{1, 2, \dots, M\}$
- Codificador: mapeia $v \in V$ em uma **palavra-código**, $\mathbf{x} = f(v) = (x_1, \dots, x_n) \in \mathcal{X}^n$ (alfabeto do código)
- Código (M, n): é um conjunto de M sequências $X = f(V) \in \mathcal{X}^n$.
- Palavra recebida: $oldsymbol{Y} = (Y_1, \dots, Y_n) \in \mathcal{Y}^n, \ oldsymbol{Y} \sim P(oldsymbol{Y} | oldsymbol{X})$
- A taxa do código M, n) é definida por

$$R = rac{\log M(n)}{n}$$
 bits por uso do canal.

- Decodificador: $\hat{V} = g(\mathbf{Y})$ (estima o índice V)
- Probabilidade de erro: $P_e = \Pr[\hat{V} \neq V]$

Canal Discreto sem Memória

 O canal induz uma distribuição de probabilidades condicionadas entres os blocos de entrada e saída:

$$\Pr[\mathbf{Y}|\mathbf{X}] = \Pr[(Y_1, ..., Y_n)|(X_1, ..., X_n)] \\ = \prod_{i=1}^n \Pr[Y_i|Y_{i-1}, ..., Y_1, X_i, ..., X_1]$$
(1)

 Formalmente um canal discreto sem memória é uma tripla (X), P, Y em que X é alfabetos do código, Y é o alfabeto de saída e P é a matriz de probabilidades de transição:

$$P(x,y) = (\Pr[Y = j | X = i]), \ i \in \mathcal{X}, j \in \mathcal{Y}$$

Note que neste caso:

$$\Pr[\boldsymbol{Y}|\boldsymbol{X}] = \prod_{i=1}^{n} \Pr[Y_i|X_i]$$
(2)

Exemplo

- A matriz de probabilidades de transição é uma matriz |X × |Y| com elementos Pr[Y = y|X = x] com índices x ∈ X para linhas e y ∈ Y para colunas.
- Exemplo: Canal binário simétrico (BSC), $\mathcal{X} = \mathcal{Y} = \{0, 1\}$

Canal $(\mathcal{X}, P(Y|X), \mathcal{Y})$

Matriz

$$P(Y|X) = \begin{pmatrix} 1 - \theta & \theta \\ \theta & 1 - \theta \end{pmatrix}$$
$$\theta = \Pr[Y = y|X = x]$$

Taxa Viável e Capacidade "Operacional"

- A probabilidade de erro P_e = Pr[Ŷ ≠ V] em geral depende do comprimento de bloco n e denotamos este fato escrevendo P_e(n).
- Taxa viável: Uma taxa R é viável se existir uma sequência de códigos $\{(M = 2^{nR}, n)\}$ tal que a probabilidade de erro $P_e(n)$ tenda para zero com n.
- Capacidade do canal é o máximo das taxas viáveis:

$$C = \max_{n \to \infty, P_e(n) \to 0} \frac{\log M(n, P_e(n))}{n}$$

• Note que $M(n) \approx 2^{nC}$ que representa o número de mensagens que podem ser transmitidas "confiavelmente" com *n* "transmissões ou usos" do canal.

Capacidade "Informacional"

• A capacidade de um canal discreto sem memória é igual a

Shannon
$$C = C^{(I)} = \max_{\{p(x)\}} I(X; Y)$$
 (3)

em que o **máximo** é buscado no espaço de todas as possíveis distribuições $\boldsymbol{p} = p(x)$ (face de um simplex).

Exemplo: Capacidade do Canal Binário Simétrico

Note que o codificador transforma

$$egin{aligned} \mathcal{C} &= 1 - \mathcal{H}(heta) \ \mathcal{H}(heta) &= - heta \log heta - (1 - heta) \log (1 - heta) \end{aligned}$$

 $V \sim \text{Uniforme} \rightarrow \boldsymbol{p} = p(x)$

• A probabilidade de erro dado que palavra-código i foi enviada

$$\lambda_i = \Pr\left[g(\mathbf{Y}) \neq i | \mathbf{X} = f(i)\right]$$

é utilizada para definir a **probabilidade de erro média** de um código de bloco (M, n) como segue

$$\lambda^{(n)} = rac{1}{M} \sum_{i=1}^M \lambda_i.$$

Para um canal discreto sem memória é possível transmitir mensagens com uma probabilidade de erro arbitrariamente pequena se a taxa de transmissão R for menor que a capacidade do canal C. Especificamente, para toda taxa R < C existe uma sequência $(2^{nR}, n)$ de códigos com probabilidade de erro média $\lambda^{(n)} \rightarrow 0$ quando $n \rightarrow \infty$.

Teoria da Informação Erro-Zero Clássica

I DAG

Teoria da Informação Erro-Zero Clássica

THE ZERO ERROR CAPACITY OF A NOISY CHANNEL

Claude E. Shannon Bell Telephone Laboratories, Murray Hill, New Jersey Massachusetts Institute of Technology, Cambridge, Mace.

Abstract

The serve error capacity C_0 of a noisy channel is defined as the least upper bound of rates at which it is possible to transmit information with serve probability of error. Various properties of C_0 are shulled; upper and lever bounds and sethed of eventiation of C_0 are given. Inequalities are obtained for the O_0 relating to the "sum" and "product" of two given channels. The source of the set for a schemel with a feedback link is considered. It is shown that which feedback is equal to thet of the same channel without feedback, the zero error capacity may be greater. A solution is given to the problem of evaluating C_0 .

Introduction

The ordinary capacity C of a noisy channel may be thought of as follows. Three exists a sequence of codes for the channel of increasing block length work that the input rate of transnission approaches C and the probability of error in decoding at the receiving point appreaches zero. Furthermore, this is not true for any value higher than C. In seem situations it may be of interest or madder, rather than codes be of interest or consider, rather than codes for which the rorbability de same and two, codes

C.E. Shannon, "Zero-error capactiy of a noisy channel", IRE Trans. on IT, Vol. 40, pp. 8-19, 1956

(DEE - UFCG - IQuanta)

Alfenas, Agosto 2022 21 / 73

SIN NOR

< ロ > < 同 > < 回 > < 回 > < 回 >

- O teorema da codificação do canal (1948) admite uma pequena probabilidade de erro que tende assintoticamente para zero com o aumento do comprimento *n* das palavras-código, todavia algumas situações deve-se exigir $P_e = 0$, por exemplo:
 - Quando o número de usos do canal é limitado e portanto resultados assintóticos não podem ser invocados de um canal e sua capacidade erro-zero (Csizár, 1981)
 - No desenvolvimento de métodos aplicáveis para outras áreas em particular a ciência da computação
- A técnica para análise da capacidade erro-zero considera associar ao canal DMC um grafo e tratando o problema do cálculo da capacidade do canal (ou do grafo) combinatoriamente.

Código (*M*, *n*) Erro-Zero

Canal Discreto sem Memória

- Definição: Código (M, n) Erro-Zero para DMC (X, P, Y).
 Um conjunto de índices {1,..., M} para as mensagens.
 - 2 Um função de codificação

$$f: \{1,\ldots,M\} \to \mathcal{X}^n$$

que produz palavras-código x^1, \ldots, x^M que formam um dicionário 3 Uma função de decodificação

$$g:\mathcal{Y}^n\to\{1,\ldots,M\},$$

um regra de decodificação que atribui a cada palavra recebida um índice de mensagem tal que

$$\Pr[g(\boldsymbol{Y} \neq i | \boldsymbol{X} = f(i))] = 0, \forall i \in \{1, \dots, M\}.$$

23 / 73

Adjacência entre Símbolos de um DMC

- Adjacência. Dois símbolos de entrada i, j ∈ X são adjacentes se existe y ∈ Y tal que Pr(y|i) e Pr(y|j) sejam ambas maiores que zero. Caso contrário, são ditos não adjacentes ou distinguíveis.
- Uma sequência x = x₁x₂...x_n transmitida por um DMC resulta numa sequência y recebida com probabilidade condicional

$$p^{(n)}(\boldsymbol{y}|\boldsymbol{x}) = \prod_{\ell=1}^{n} \Pr[y_{\ell}|x_{\ell}]$$

 Note que a matriz de probabilidades de transição para n usos de um DMC pode ser escrita como

$$P^{(n)} = P \otimes P \otimes \ldots \otimes P$$

Adjacência ou Indistinguibilidade de Sequências

- Se duas sequência x' e x" podem resultar numa mesma y com probabilidade maior que zero então nenhum decodificador pode decidir com P_e = 0 qual das duas sequências transmitida. Tais sequências são chamadas indistinguíveis.
- Note que o enunciado equivale a afirmar que x' e x'' são distinguíveis se e somente se existir pelo menos um l, 1 ≤ l ≤ n tal que x'_l e x''_l sejam não adjacentes, ou seja,

em que, pelo menos, $x_\ell''
eq x_\ell'$

Adjacência em Termos da Matriz $P^{(n)}$

 As sequências x' e x'' são não-adjacentes se e somente se as linhas da matriz P⁽ⁿ⁾ por elas indexadas forem ortogonais

$$\langle P^{(n)}(\boldsymbol{y}|\boldsymbol{x''})|P^{(n)}(\boldsymbol{y}|\boldsymbol{x'})\rangle = 0$$

 Os elementos de um código C ⊆ Xⁿ podem ser usados sem erro se e somente se as linhas correspondentes na matriz P⁽ⁿ⁾ forem mutuamente ortogonais.

Distinguibilidade e Ortogonalidade entre Linhas

Matriz de probabilidades de transição

 $\begin{array}{lll} \langle P(\cdot|0)|P(\cdot|2)\rangle &=& 0 \Rightarrow {\rm entradas\ separatives} \\ \left(P(\cdot|0]\dot{P}(\cdot|3)\right) &=& 1/4 \Rightarrow {\rm\ entradas\ em\ confusão} \end{array}$

Código de Bloco Erro-Zero e Capacidade Erro-Zero

- Um código de bloco erro-zero de taxa R ≜ ¹/_n log M(n) para um canal DMC (X, P(y|x), Y) é definido por
 - Um conjunto das mensagens $W = \{1, \ldots, M(n)\}$
 - 2 Uma função de codificação $f: \mathcal{W} \to \mathcal{X}^{\otimes n}$
 - $\textcircled{O} Uma função de decodificação <math>g:\mathcal{Y}^n \to \mathcal{W}$
 - Uma condição

 $\Pr[g(y) \neq w | f(w) = x(w)] = 0$ para todo $w \in W$

• Capacidade Erro-Zero de um Canal Discreto sem Memória

$$C_0(P) = \limsup_{n \to \infty} \frac{1}{n} \log M(n)$$

em que M(n) é a cardinalidade do maior conjunto de linhas mutuamente ortogonais da matriz $P^{(n)}$

- Escolhendo o código trivial: $C = \{(0), (2)\}$ qual a taxa erro-zero?
- Neste caso *n* = 1, *M*(*n*) = 2
- Conjuntos "típicos": $A_0 \cap A_1 = \emptyset$ sendo

$$A_0=\{0,1\},\ A_1=\{2,3\}$$

• Taxa:
$$R = \frac{\log M(n)}{n} = 1$$
bit/uso

• É possivel um código com taxa R > 1?

• Código: $C = \{(0,0), (1,2), (2,4), (3,1), (4,3)\}$

• Note que $A_i \cap A_j = \emptyset$ para $i \neq j$, portanto a taxa erro-zero é

$$R = \frac{\log M(2)}{2} = \frac{1}{2}\log 5 \approx 1.161 \le C_0$$

(DEE - UFCG - IQuanta)

1 - nan

- O exemplo do canal pentágono foi introduzido no artigo de Shannon de 1956, entretanto a capacidade erro-zero deste canal somente foi calculada por Lovász em 1979 com uso de grafos.
- Lovász mostrou que $C_0 = R$ considerando o tamanho de cliques em um grafo-produto.
- Observe que a capacidade ordinária (com probabilidade de erro assintoticamente pequena) é

 $C = I(X; Y) = \log 5 - \log 2 = \log (5/2) \approx 1.322$ bits/uso > C_0 {p(x)}

Conexões com a Teoria dos Grafos

- A capacidade erro-zero depende apenas da quais símbolos em $\mathcal X$ são adjacentes dois a dois.
- O grafo característico G = (V, E) de um DMC tem vértices V = X e arcos dados pares de linhas ortogonais da matriz de transição P(y|x).

Cliques e Símbolos Distinguíveis

- Número de clique (w(G)) de um grafo G é a cardinalidade do maior sub-grafo completo.
- No grafo G_5 temos $w(G_5) = 2$
- Note que o conjunto de vértices de qualquer clique do grafo característico é um conjunto de símbolos distinguíveis, por exemplo, M(n = 1) = M(G₅) = w(G₅) = 2.

Exemplo Clique no Grafo Característico G5

Exemplo: Grafos de adjacência e característico

• Grafo de adjacência é o complementar do grafo característico.

 $\begin{array}{c} & 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 5 \end{array}$ Grafo Característico Grafo de Adjacência $\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \end{array}$ Grafo Característico Grafo de Adjacência $\begin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ \end{array}$

Canal

Um Produto de Grafos

•
$$G^n = (V(G^n), E(G^n))$$
 em que

•
$$V(G^n) = \mathcal{X}^n$$

 Os vértices x' e x'' são conectados se e somente se as sequências correspondentes são distinguíveis

• Note que o grafo-produto equivale ao grafo característico para *n* usos do canal DMC com grafo *G*.

$$P \rightarrow G$$

$$P^{(n)} \rightarrow G^{n}$$

$$P^{(n)} = \underbrace{P \otimes P \otimes \ldots \otimes P}_{n}$$

O número de sequências distinguíveis de comprimento n é número de clique do grafo G^n , ou seja

$$M(n) = w(G^n)$$

Concluímos que as sequências correspondentes a um sub-grafo completo define um código erro-zero para o canal.

A capacidade erro-zero para o DMC $(\mathcal{X}, P, \mathcal{Y})$ pode ser reescrita na forma

$$C_0 = C_0(G) = \sup_n \frac{1}{n} \log w(G^n)$$

A notação $C_0(G)$ remete ao grafo característico sendo frequentemente encontrada.
Cliques de Grafo-Produto

三日 のへの

Um código de lista para um DMC $W : \mathcal{X} \to \mathcal{Y}$ com parâmetros (L, n) é um conjunto $\mathcal{C} \subseteq \mathcal{X}^n$ tal que para todo $\mathbf{y} \in \mathcal{Y}^n$ temos

$$\left| \{ x \in \mathcal{C} : W^n(y|x) > 0 \} \right| \le L$$

 Observe que recebido y ∈ 𝔅ⁿ, o decodificador pode decidir em uma lista de no máximo L x's transmitidos.

Körner et. al, Zero-Error Information Theory, IEEE Trans. on IT, 1998

A capacidade $C_{0,L}(W)$ de um código de lista de tamanho de lista L do canal DMC $\{W\}$ é

$$\limsup_{n\to\infty}\frac{1}{n}\log N(W,n,L)$$

em que N(W, n, L) = |C|. Capacidade erro-zero de códigos de lista A capacidade erro-zero do código de lista do DMC $\{W\}$ é

$$C_{0,\infty}(W) = \sup_{L} C_{0,L}(W)$$

Dado um conjunto B com b elementos e números naturais n > 1 e $k \le b$ um conjunto $C \subseteq B^n$ é dito ser k-separável se para toda k-upla de elementos distintos de C existe uma coordenada $1 \le i \le n$ na qual kvalores da i-ésima coordenada de k sequências são todas distintas. Faça $B = \{1, 2, 3\}, \ b = |B| = 3, \ n = 2, \ k = 2$, temos

$$\mathsf{B}^2 = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$

Note que o conjunto

$$C = \{(1,2), (2,3), (3,1)\} \subset B^2$$
 é 2 – separável

enquanto que

$$D = \{(1,2), (2,3), (3,1), (2,3)\}$$
 não .

Sendo N(n, b, k) a cardinalidade do maior subconjunto k-separável de B^n e definindo

$$q(b,k) \triangleq \lim_{n \to \infty} \sup \frac{1}{n} \log N(n,b,k)$$

- $N(n, b, k) \approx 2^{q(b,k)}$: número de conjuntos separáveis
- Notamos a semelhança entre a expressão anterior e a capacidade dos códigos de lista

$$\limsup_{n\to\infty}\frac{1}{n}\log N(W,n,L)$$

 Limitantes para q(b, k): Körner et al.: New bounds for perfect hashing via information theory, Euro. J. Combinatorics, vol. 9, pp.523-530, 1988

Capacidade Erro-Zero de Canais Quânticos

Mais detalhes aqui \downarrow

Elloá B. Guedes Francisco Marcos de Assis Rex A.C. Medeiros

Quantum Zero-Error Information Theory

(DEE - UFCG - IQuanta)

WECIQ 2022

Alfenas, Agosto 2022 43 / 73

É natural perguntar pelos análogos e extensões da teoria da informação erro-zero clássica para sistemas quânticos.

- Generalização da noção de capacidade erro-zero clássica
- Definição formal e interpretação baseada na teoria de grafos
- Condições (código e POVM) para alcançar a capacidade erro-zero
- Uma cota superior: a capacidade ordinária de HSW

A capacidade de um canal (clássico ou quântico) é o supremo das taxas nas quais a informação pode ser transmitida confiavelmente.

- Sistemas quânticos exibem propriedades não compartilhadas por sistemas clássicos sendo natural que a capacidade dos canais quânticos apresentem características peculiares.
- Exemplo: vimos que a capacidade erro-zero de um canal clássico é positiva se e somente se o for para um único uso do canal, M(1) > 1, entretanto no contexto quântico existem canais com taxa nula para um uso mas com capacidade erro-zero positiva mais dois usos.

Exemplos de capacidades quânticas segundo o protocolo utilizado

- Palavras-código produtos tensoriais e medições individuais
 - on shot e capacidade adptativa
- Entrelaçamento entre várias entradas e medições individuais
- Palavras-código de produtos tensoriais e medições coletivas
 - Capacidade Holevo-Schumacher-Westmoreland (HSW)

TI Clássica	TI Quântica
Símbolos a _i	Estados quânticos ρ_i
Alfabeto $\{a_1,\ldots,a_l\}$	Estados quânticos de entrada $\{\rho_1, \ldots, \rho_l\}$
$Palavras-código \subset \{a_1,\ldots,a_l\}^n$	Palavras-código quânticas $\subset \{ ho_1,\ldots, ho_l\}^{\otimes n}$
Fonte DMS (\mathcal{A}, \vec{p})	Fonte DMS $\rho = \sum_{i=1}^{\ell} p_i \rho_i$
Canal DSM $[p(y x)]$	Canal quântico $\mathcal{E}(ho)$
Matriz estocástica	Mapa positivo que preserva o traço
Entropia de Shannon $H(X)$	von Neumann $\mathcal{S}(ho) = - { m tr} \left[ho \log ho ight]$
Capacidade de Shannon	Várias definições
Decodificação	Medições POVM + decodificação

EL SQA

Sistema de Comunicações Quântico

- Alice escolhe uma mensagem $i \in \{0, \ldots, M-1\}$.
- Codificador gera a **palavra-código** $\overline{\rho}_i = \rho_{i_1} \otimes \ldots \otimes \rho_{i_n}$.
- O conjunto $S = \{\rho_0, \dots, \rho_\ell\}$ é o **alfabeto** do código, cada $\rho_{i_j}, j = 1, \dots, n$ é escolhido em S.
- A saída do canal quântico $\mathcal{E}(\overline{\rho}_i)$ dada pelo POVM $\{\mathcal{M}_0, \ldots, \mathcal{M}_{K-1}\}$.
- Decodificador: gera a estimativa \hat{i} com base na saída do POVM.

1= 900

Código de bloco quântico (M, n)

Dado o **alfabeto** $S = \{\rho_i\}_{i=1}^l$, um código de bloco quântico erro-zero de **taxa** $R = \frac{1}{n} \log M$ é definido por

Um conjunto das mensagens :

$$\{0,\ldots,M-1\}$$

2 Uma função de codificação: $f_n : \{0, \ldots, M-1\} \to S^{\otimes n}$,

$$f_n(i) = \overline{\rho}_i = \rho_{i_1} \otimes \ldots \otimes \rho_{i_n}.$$

Uma função de decodificação:

$$g:\{0,\ldots,K-1\}\to\{0,\ldots,M-1\}$$

Uma condição erro-zero:

$$P_e = \Pr\left[g(y) \neq i | f_n(i) = \overline{\rho}_i\right] = 0, i = 0, \dots, M-1$$

Exemplo: Medições Projetivas (von Neumann)

Considere o estado quântico $|\psi\rangle = \frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle$. O operador de densidade é:

$$\rho = |\psi\rangle\langle\psi| = \begin{bmatrix}\frac{3}{5}\\\frac{4}{5}\end{bmatrix}\begin{bmatrix}\frac{3}{5} & \frac{4}{5}\end{bmatrix} = \frac{1}{25}\begin{bmatrix}9 & 12\\12 & 16\end{bmatrix}$$

Seja \mathcal{P} o POVM definido por $\mathcal{P} = \{A_1, A_2\}$, em que

$$A_1 = |0\rangle\langle 0| = egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix} \qquad A_2 = |1\rangle\langle 1| = egin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}$$

As probabilidades de observar a saída A_1 ou A_2 são

50 / 73

Modelo de Canal Quântico por Operadores de Kraus

$$\mathcal{E}(\rho) = \sum_{a} E_{a} \rho E_{a}^{\dagger}, \qquad \sum_{a} E_{a}^{\dagger} E_{a} = \mathbb{1}$$

• Exemplo: Canal de Atenuação de Amplitude (dissipa energia)

$$\mathcal{E}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger},$$

em que $E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{pmatrix}$ e $E_1 = \begin{pmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{pmatrix}$.

A capacidade erro-zero de um canal quântico é a o limite superior das taxas viáveis para transmissão zero-erro

$$C_{0}(\mathcal{E})) = \sup_{\mathcal{S}} \sup_{n} \frac{1}{n} \log M(n)$$

sendo M(n) o máximo número de mensagens que podem ser transmitidas livres de erros quando um código quântico erro-zero (M, n) com estados (alfabeto quântico) de S é utilizado.

 Denominamos par ótimo (S, M) o par formado por um alfabeto quântico S e um POVM M tal que a capacidade erro-zero é alcançada.

Adjacência e Distinguibilidade de Estados Quânticos

- Estamos interessados em canais quânticos com capacidade erro-zero não trivial, $C_0 > 0$. Ora, isto é possível se pelo menos dois estados de entrada sejam não-adjacentes ou distinguíveis.
- Mas o que é exatamente um par de estados não-adjacentes?
- Adjacência de Estados Quânticos. Seja *E* uma canal quântico e *ρ_i*, *ρ_j* ∈ *S* dois estados quânticos, *i* ≠ *j*. Dizemos que *ρ_i* e *ρ_j* são **não-adjacentes** na saída do canal se os espaços de Hilbert gerados pelos suportes de *ρ_i* e *ρ_j* forem ortogonais.
- Estados não-adjacentes são também denominados distinguíveis ou ainda ortogonais com a notação ⊥_E para destacar a dependência com o canal.

Ilustração da distinguibilidade entre estados quânticos

• Quando dois estados quânticos ρ_1 e ρ_2 são distinguíveis?

Exemplo: Canal de Despolarização tem $C_0 = 0$

Este canal mantém entrada com probabilidade p ou a despolariza completamente com probabilidade 1 - p, explicitamente para d = 2 temos

$$\mathcal{E}(
ho) = (1-
ho)
ho +
ho rac{1}{3} 1$$

Considere dois estados ρ_i e ρ_j genéricos na entrada do canal, então $C_0 > 0$ se na saída do canal tenhamos respostas distinguíveis, verifiquemos

$$\operatorname{tr} \left[\mathcal{E}(\rho_i) \mathcal{E}(\rho_j) \right] = \operatorname{tr} \left[\left((1-p)\rho + p\frac{1}{3} \mathbb{1} \right) \left((1-p)\rho + p\frac{1}{3} \mathbb{1} \right) \right] \\ = \operatorname{tr} \left[(1-p)^2 \operatorname{tr} \left[\rho_i \rho_j \right] \right] + \frac{p(1-p)}{2} \operatorname{tr} \left[\rho_i + \rho_j \right] + \frac{p^2}{4} \mathbb{1} \\ > 0$$

para qualquer 0 e portanto a capacidade erro-zero do canal de despolarização é zero.

(DEE - UFCG - IQuanta)

Exemplo: Canal Quântico com $C_0 > 0$

⋆ • M₀

Canal Quântico
$$(d = 8)$$

Conjunto de estados distinguíveis

- Espaço de Hilbert com dimensão d = 8.
- Mensagens clássicas {0, 1, 2, ..., 7}
- Alfabeto quântico: $S = \{\rho_0 = |0\rangle\langle 0|, \rho_1 = |1\rangle\langle 1|, \dots, \rho_7 = |7\rangle\langle 7|\}$
- Codificação: $i \rightarrow \rho_i, i = 0, \dots, 7$.

• POVM:
$$\mathcal{M} = \{M_i = |i\rangle\langle i|\}_{i=0}^7$$

Exemplo: Canal Quântico com $C_0 > 0$ (cont.)

• Este canal possui $C_0 > 0$ por ser possível identifica conjunto de estados não-adjacenctes

$$\{\rho_0, \rho_1, \rho_3, \rho_5, \rho_7\}$$

• Temos um limitante inferior para a capacidade:

$$C_0(\mathcal{E}) \geq rac{1}{(n=1)} \log 5 \geq 2.32$$
 bits por uso

 Convém ressaltar que log 5 é um limitante inferior pois para ter C₀(ε) devemos considerar o supremos das taxas para todos os alfabetos quânticos S e todos os comprimentos n dos códigos de bloco.

Grafo Característico para Canais Quânticos

Considere um canal quântico \mathcal{E} e um alfabeto de entrada $\mathcal{S} = \{\rho_1, \dots, \rho_\ell\}$ o grafo característico $\mathcal{G} = (V, E)$ é definido por

- $V(\mathcal{G}) = \{1, \dots, \ell\}, \text{ indexando os estados de } S,$

Clique máximo em vermelho.

O grafo-produto \mathcal{G}^n é definido para os produtos tensoriais dos estados do alfabeto quântico, $\mathcal{S}^{\otimes n}$

•
$$V(\mathcal{G}^n) = \{1, \ldots, \rho_I\}^n$$
,

A analogia com o caso clássico é natural com a consideração da busca do alfabeto quântico $\mathcal{S}.$

Sendo $w(\mathcal{G}^n)$ a redefinição da capacidade erro-zero de um canal quântico em termos do grafo-produto é imediata:

$$C_0(\mathcal{E}) = \underset{\mathcal{S}}{\operatorname{supsup}} \frac{1}{n} \log w(\mathcal{G}^n)$$

em que o espaço de busca consiste de todos os alfabetos ${\mathcal S}$ e todos os códigos de comprimento n

- Suponhamos um alfabeto quântico S = {ρ₁,..., ρ_ℓ} que alcance a capacidade erro-zero de um canal quântico. Os estados ρ_i em S em princípio podem ser puros ou misturados. Felizmente a busca pode ser feita apenas entre estados puros.
- Teorema: A capacidade erro-zero de canais quânticos pode ser alcançada por um alfabeto S formado por estados puros, ou seja, S = {ρ_i = |v_i⟩⟨v_i|}.
- A ideia da verificação é considerar um conjunto ótimo S de misturados e encontrar um outro conjunto ótimo S' contendo apenas estados puros.

- Qual a relação entre ortogonalidade entre estados na entrada do canal e não-adjacência?
- Sabe-se que dois estados não-adjacentes são necessariamente ortogonais na entrada do canal quântico. Entretanto, supreendentemente, o alfabeto ótimo não é em geral um conjunto de estados ortogonais dois a dois!
- No próximo slide este fenômeno é exemplificado.

Considere um canal quântico com operadores de Kraus $\{E_1, E_2, E_3\}$

$$E_{1} = \begin{bmatrix} 0.5 & 0 & 0 & 0 & \frac{\sqrt{49902}}{620} \\ 0.5 & -0.5 & 0 & 0 & 0 \\ 0 & 0.5 & -0.5 & 0 & 0 \\ 0 & 0 & 0.5 & -\frac{\sqrt{457}}{50} & \frac{\sqrt{457}}{50} \\ 0 & 0 & 0 & -0.62 & -\frac{289}{1550} \end{bmatrix}, \quad E_{2} = \begin{bmatrix} 0.5 & 0 & 0 & 0 & -\frac{\sqrt{49902}}{620} \\ 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & \frac{\sqrt{457}}{50} & -\frac{\sqrt{457}}{50} \\ 0 & 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

$$E3 = 0.3 |4\rangle \langle 4|,$$

para uma base computacional $\beta = \{|0\rangle, \dots, |4\rangle\}$ de um espaço de Hilbert penta-dimensional.

Considere o alfabeto quântico:

$$\mathcal{S} = \left\{ |v_1\rangle = |0\rangle, |v_2\rangle = |1\rangle, |v_3\rangle = |2\rangle, |v_4\rangle = |3\rangle, |v_5\rangle = \frac{|3\rangle + |4\rangle}{\sqrt{2}} \right\}$$

Exemplo (cont.

Calculando as saídas $\mathcal{E}(|v_i\rangle), i = 1, \dots, 5$ podemos verificar as ortogonalidades

$$\begin{split} |v_1\rangle \bot_{\mathcal{E}} |v_3\rangle, & |v_1\rangle \bot_{\mathcal{E}} |v_4\rangle, & |v_2\rangle \bot_{\mathcal{E}} |v_4\rangle, \\ |v_2\rangle \bot_{\mathcal{E}} |v_5\rangle, & e & |v_3\rangle \bot_{\mathcal{E}} |v_5\rangle. \end{split}$$

- Considera mensagens clássicas mapeadas em produtos tensoriais de estados quânticos e medidas coletivas e refere-se à transmissão de mensagens clássica com $P_e < \epsilon$ e número ilimitado de usos do canal.
- Generaliza a noção de capacidade ordinária dos canais clássicos sendo dada por

$$C_{1,\infty} \equiv \max_{p_i,\rho_i} \chi_{p_i,\rho_i},$$

em que

$$\chi_{p_i,\rho_i} = S\left(\mathcal{E}\left(\sum_i p_i \rho_i\right)\right).$$

O espaço de busca é o conjunto de todas as famílias $\{p_i, \rho_i\}$ para o canal quântico \mathcal{E} .

Limitante para a Capacidade Erro-Zero

• Teorema: A capacidade erro-zero de um canal quântico \mathcal{E} é limitada superiormente pela capacidade HSW:

$$C_0(\mathcal{E}) \leq C_{1,\infty}$$

- A prova considera a condição erro-zeo e o limitante de Holevo (Cap.5,p.88).
- No exemplo do slide 59, com S que dá G = G₅ a capacidade erro-zero do canal é alcançada: C₀(G₅) = ¹/₂ log 5 bits/uso.
 Mas a quantidade de Holevo para a família {S, p_i = 1/5} é maior que C₀(G₅),

$$\begin{split} \chi_{\{S,1/5\}} &= \frac{1}{5} \left[S\left(\mathcal{E}\left(\sum_{i=1}^{5} |v_i\rangle \langle v_i| \right) \right) - \sum_{i=1}^{5} S(\mathcal{E}(|v_i\rangle \langle v_i|)) \right] \\ &= 1.53 \\ &\geq C_0(G_5) \approx 1,16. \end{split}$$

- Winter et al., Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász θ function, arXiv:1002.2514[quant-ph], Mar 2010
- Andreas Winter et al., *Improving zero-error classical communication* with entanglement, arXiv:0911.5300[quant-ph], Nov 2009
- Andreas Winter et al., Zero-error channel capacity and simulation assisted by non-local correlations, arXiv:1003.3195[quant-ph], Mar 2010

- Propõe uma generalização quântica da matriz de confusão (adjacência) no espaço dos operadores com a qual redefine as capacidades erro-zero clássica, quântica e quântica com auxílio de emaranhamento
- Apresenta uma versão quântica da função ϑ de Lovász como um limite superior para o número de mensagens erro-zero que podem ser transmitidas com auxílio de emaranhamento
- Propõe o estudo de espaços de operadores associados aos canais como grafos não-comutativos

Implicação: emaranhamento de transmissão erro-zero

- Shi and Duan, Entanglement between Two Uses of a Noisy Multipartite Quantum Channel Enables Perfect Transmission of Classical Information, PRL 101, 020501 (2008)
- Para um sistema com *m* fontes e *n* destinatários com transmissão erro-zero através de um canal ruidoso
- Entre as fontes é permitido a troca de mensagens clássicas (cooperação clássica) e também entre os destinatários
- Se o canal é clássico uma única transmissão erro-zero é possível se e somente se múltiplas transmissões erro-zero são possíveis
- Supreendentemente, para canais quânticos que não permitem transmissão erro-zero com uma transmissão podem permitir para duas transmissões em sistemas com $m \ge 2$ ou $n \ge 2$

Implicação: superativação de canais quânticos

- Toby S. Cubbit et al., Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel, arXiv:0906.2547[quant-ph]v2, Sept 2009
- Chen, Cubbit, Harrow and Smith, *Super-duper-activation of the Zero-Error Quantum Capacity*, International Symposium on Information Theory (ISIT), Austin, Texas, June, 2010

Teorema: Sejam $d_A = 16$, $d_E = 124$ e $d_B = 1984$. Então existem canais \mathcal{E}_1 , \mathcal{E}_2 , tais que:

- **(**) Cada canal $\mathcal{E}_{1,2}$ mapeia \mathbb{C}^{d_A} em \mathbb{C}^{d_B} e têm d_E operadores de Kraus
- 2 Cada canal $\mathcal{E}_{1,2}$ tem capacidade erro-zero nula

• O canal conjunto $\mathcal{E}_1 \otimes \mathcal{E}_2$ tem capacidade erro-zero maior que zero. Note que individualmente os canais **não** podem transmitir qualquer informação livre de erros ainda que um número ilimitado de usos de canal seja permitido. Entretanto se os dois canais são combinados mesmo um **único uso** de cada um dos dois canais permite a transmissão de informação livre de erros!

(DEE - UFCG - IQuanta)

- Salman Beigi and Peter W. Shor, *On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels*, arXiv:07092090[quant-ph], Oct 2008
- Partindo do problema NP da determinação do número de clique em grafos define o problema análogo quântico: dado um canal quântico decida se existem k estados distinguíveis.
- O que coincide com o problema da determinação da capacidade erro-zero de um canal quântico definida com uso de grafos.

Implicação: sub-espaços livres de descoerência

- Hui Khoon Ng et al., Information preserving structures: A general framework for quantum zero-error information, arXiv:1006.1358v1[quant-ph], Jun 2010
- Introduzir um referencial geral usando *estruturas preservadoras de informação* para classificar os tipos de informação que podem ser transmitidas livres de erro em sistemas quânticos.
- Provar que todo código para transmissão livre de erros possui a mesma estrutura algébrica matricial.
- Oferecer critérios distintos para preservação da informação e algoritmos para encontrar todas as estruturas preservadoras de informação de um canal.

Bibliografia I

- Rex A. C. Medeiros, Francisco M. de Assis, *Quantum Zero-Error Capacity*, International Journal of Quantum Information, Vol. 3, No. 1, pp. 135-139, May, 2005.

- C. E. Shannon *The Zero Error Capacity of a Noisy Channel*, IRE Transations on Information Theory, Vol. 2, NO. 3, pp. 8-19, 1956.
- Lászlo Lovàsz, On the Shannon Capacity of a Graph, IEEE Transations on Information Theory, Vol. 25, No. 1, pp. 1-7, May 1979.

- Runyiao Duan, Super-Activation of Zero-Error Capacity of Noisy Quantum Channels, arXiv 0906.02527v1, [quant-ph], 15 Jun 2009
- G. Brassard and L. Salvail, *Secret-key reconciliation by public discussion*, in Proc. EUROCRYPT'93: Workshop on the Theory and Applications of Cryptographic Technics on Advances in Cryptology. New York: Springer-Verlag, 1994, pp. 410-423.

C. H. Bennett, G. Brassard, C. Crépeau, and U. Maurer, *Generalized privacy amplification* IEEE Transations Information Theory, vol. 41, no. 6,pp. 1915-1923, Nov. 1995.

Toby S. Cubbit et al., Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel, arXiv:0906.2547[quant-ph]v2, Sept 2009

Shi and Duan, Entanglement between Two Uses of a Noisy Multipartite Quantum Channel Enables Perfect Transmission of Classical Information, PRL 101, 020501 (2008)

Salman Beigi and Peter W. Shor, On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels, arXiv:07092090[quant-ph], Oct 2008

EL SQA

A B M A B M

Image: A matrix

Chen, Cubbit, Harrow and Smith, Super-duper-activation of the Zero-Error Quantum Capacity, International Symposium on Information Theory (ISIT), Austin, Texas, June, 2010

Andreas Winter et al., Improving zero-error classical communication with entanglement, arXiv:0911.5300[quant-ph], Nov 2009

Andreas Winter et al., Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovász ϑ function, arXiv:1002.2514[quant-ph], Mar 2010

Andreas Winter et al., Zero-error channel capacity and simulation assisted by non-local correlations,arXiv:1003.3195[quant-ph], Mar 2010

Hui Khoon Ng et al., Information preserving structures: A general framework for quantum zero-error information, arXiv:1006.1358v1[quant-ph], Jun 2010

∃ ► < ∃ ►

Image: Image:

ELE DOG