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Plan

• Nonlocality

• Contextuality

• Both together

• Current/Future Works



Nonlocality
Historical approach

• Measurement reveals preassigned values

• Freedom to choose among allowed 
measurements

• Choices/results at one part do not 
influence on choices/results at another



Physical Background

• Extrinsic Probabilities: they come from 
ignorance

• Determinism

• No spooky action at a distance 



Mathematical 
Formulation

p (a, b|x, y)Joint conditional probabilities
(correlations)

Two (for simplicity)

Outcomes

Measurements

a 2 A, b 2 B
x 2 X , y 2 Y

A,B,X ,Y Finite sets

Parts



Mathematical 
Formulation

p (a, b|x, y)Joint conditional probabilities

p (a, b|x, y) =
X

�

p (�) p (a|x,�) p (b|y,�)

(correlations)

Locality:



Examples
a, b, x, y 2 {0, 1}

p (a, b|x, y) = 1

4
8a, b, x, y

p (a|x) = 1

2
= p (b|y)



Examples
a, b, x, y 2 {0, 1}

p (0, 0|x, y) = 1

p (0|x) = 1 = p (0|y)



Examples
a, b, x, y 2 {0, 1}

p (a, b|x, y) = p (a, b)

p (a, b) =
X

�=(a,b)

p (�) � (a|�) � (b|�)



Examples
a, b, x, y 2 {0, 1}

p (0, 0|0, 0) = p (1, 1|0, 0) = 1

2

p (0, 1|0, 1) = p (1, 0|0, 1) = 1

2

p (0, 1|1, 0) = p (1, 0|1, 0) = 1

2

p (0, 0|1, 1) = p (1, 1|1, 1) = 1

2

Exercise!



Bell Inequalities
Locality assumption implies restrict bounds for 

sums of joint conditional probabilities

Making a long story short:

Quantum Theory allows for violations of Bell 
inequalities



Example

Clauser, Horne, Shimony, Holt, PRL (1969)

S = p (00|00) + p (11|00) + p (00|01) + p (11|01)+
+ p (00|10) + p (00|10) + p (01|11) + p (10|11)

S  3

S  4
Clearly

With locality



Non-Local Examples
a, b, x, y 2 {0, 1}

p (0, 0|0, 0) = 1

p (0, 0|0, 1) = 1

p (0, 0|1, 0) = 1

p (1, 1|1, 1) = 1

Exercise 2



Non-Local Examples
a, b, x, y 2 {0, 1}

Exercise 3

p (0, 0|0, 0) = p (1, 1|0, 0) = 1

2

p (0, 0|0, 1) = p (1, 1|0, 1) = 1

2

p (0, 0|1, 0) = p (1, 1|1, 0) = 1

2

p (1, 0|1, 1) = p (0, 1|1, 1) = 1

2

Popescu, Rohrlich, Found. Phys. (1994)



What is the difference?

p (0, 0|0, 0) = 1

p (0, 0|0, 1) = 1

p (0, 0|1, 0) = 1

p (1, 1|1, 1) = 1

Exercise 2

Exercise 3

p (0, 0|0, 0) = p (1, 1|0, 0) = 1

2

p (0, 0|0, 1) = p (1, 1|0, 1) = 1

2

p (0, 0|1, 0) = p (1, 1|1, 0) = 1

2

p (1, 0|1, 1) = p (0, 1|1, 1) = 1

2

Deterministic Non-Deterministic

p(a |x) = ?

Signalling Non-Signalling
Popescu, Rohrlich, Found. Phys. (1994)



Geometrical 
Perspective



From the beginning

p (a) = p (a = 0) �0 (a) + p (a = 1) �1 (a)

�1 (a)�0 (a)



From the beginning
p (a, b) =

X

↵,�

p (a = ↵, b = �) �↵,� (a, b)

�00 (ab) �01 (ab)

�10 (ab)

�11 (ab)

Probability Simplex



For Conditional 
Probabilities
p (a|x) =

X

↵

p (↵|x) �↵ (a|x)

P↵|x =
Y

x

P↵

⇥ ⌘

�0 (a|0) �1 (a|0) �1 (a|1)�0 (a|1)

�0 (a|0) �0 (a|1) �1 (a|0) �0 (a|1)

�0 (a|0) �1 (a|1) �1 (a|0) �1 (a|1)

Polytope



Correlation Polytope

p (a, b|x, y) =
X

↵�

p (↵,�|x, y) �↵� (a, b|x, y)

Almost a tautology

�↵� (a, b|x, y) Deterministic probabilities
Extremal points

Meaning: any “correlation” is a 
convex combination of those 

deterministic distributions



Bell Inequalities
Bounds on sums of “correlations”: 

Finitely many

Hyperplanes defining Hyperspaces!

Polytope: intersections of finitely many hyperspaces



Vertices and Facets
Dual descriptions of polytopes

Tight inequalities: those saturated on facets



Other interesting sets



Quantum Set

p (a, b|x, y) = tr
�
⇢AB Ma|x ⌦Nb|y

�

Not a polytope!
A convex set



Non-Signalling Set
p(a |x, y) := ∑

b

p(a, b |x, y) = p(a |x)

p(b |x, y) := ∑
a

p(a, b |x, y) = p(b |y)



A Cartoon

ℒ ⊂ 𝒬 ⊂ 𝒩𝒮



Usefulness
•Ekert 91 protocol for QKD

•One can mimic Nonlocality using communication

•Nonlocality is a resource!

•Secrecy

•Randomness



Finally… Contextuality



Nonlocality
Historical approach

• Measurement reveals preassigned values

• Freedom do choose among allowed 
measurements

• Choices/results at one part do not 
influence on choices/results at another



Contextuality
Historical approach

• Measurement reveals preassigned values

• Freedom do choose among allowed 
measurements

• Choices of compatible measurements do 
not influence on choices/results of another



Physical Background

• Extrinsic Probabilities: they come from 
ignorance

• Determinism

• No spooky action at a distance 

For locality



Physical Background

• Extrinsic Probabilities: they come from 
ignorance

• Determinism

• Things are what they are: noncontextuality 

For noncontextuality



Mathematical 
Formulation

p (a, b|x, y)Joint conditional probabilities
(correlations)

Two (for simplicity)

Outcomes

Measurements

a 2 A, b 2 B
x 2 X , y 2 Y

A,B,X ,Y Finite sets

Parts



Mathematical 
Formulation

Joint conditional probabilities
(correlations)

Outcomes

Measurements

p ({ai}|{xi})

xi 2 X

ai 2 Ai

Contexts c : i, j 2 c ) xi, xj compatible

Compatibility Graphs



First Historical Example

Kochen, Specker, J. Math. Mech. (1967)

State Independent Proof

Thm: There is no non-contextual assignalation 
consistent with quantum mechanics 



Simplest Example

Cabello, Estebaranz, Garcia Alcaine, Phys Lett. A (1996)

n = 18, d = 4

Parity Proof



Even Simpler

�x ⌦ I I ⌦ �x �x ⌦ �x

I ⌦ �z �z ⌦ I �z ⌦ �z

�x ⌦ �z �z ⌦ �x �y ⌦ �y

Peres, Phys. Lett. A (1990); Mermin, Phys. Rev. Lett. (1990)

Peres-Mermin Square



Mathematical 
Formulation

Joint conditional probabilities
(correlations)

p ({ai}|{xi})

p ({ai}|{xi}) =
X

�

p (�)
Y

xi2{xi}

p (ai|xi,�)



Boole Inequalities
Noncontextuality assumption implies restrict 

bounds for sums of joint conditional probabilities

And once more...

Quantum Theory allows for violations of Boole 
inequalities



Geometrical 
Perspective



Boole Inequalities
Bounds on sums of “correlations”: 

Finitely many

Hyperplanes defining Hyperspaces!

Polytope: intersections of finitely many hyperspaces



Vertices and Facets
Dual descriptions of polytopes

Tight inequalities: those saturated on facets



Other interesting sets



Quantum Set

Not a polytope!
A convex set

p ({ai}|c) = tr

 
⇢
Y

i2c

Pai|i

!



Nondisturbing Set

p (ai|i) = p (ai|c) :=
X

j2c,j 6=i

p ({ai}|c)



Example

Klyachko, Can, Binicioglu, Shumovsky, PRL (2008).

2

type inequality for testing classical realism
∑

AI commute

〈ψ|fI(AI)|ψ〉 ≥ 0. (2)

It turns out that these inequalities are also sufficient
for the existence of hidden variables [8]. To make this
criterion effective, observe that the set of all functions
given by Eq. (1) form a polyhedral cone, called Vorob’ev–
Kellerer cone, and the conditions (2) should be checked
for its extremal edges only. The latter can be routinely
found using an appropriate software, e.g. Convex package
[10].

As a result, we end up with a finite set of inequalities
that are necessary and sufficient for an extension of the
partial distributions of commuting observables AI to a
hidden distribution of all observables Ai, commuting or
not. The latter can be modelled by classical means like
tossing dice. This makes the quantum system indistin-
guishable from a classical one.

Let’s separate the extremal edges generated by a sin-
gle function fI(aI) ≥ 0 vanishing everywhere except one
point. The corresponding Bell inequality is vacuous and
we call such extremal functions trivial .

For two qubits the ansatz gives 8 nontrivial extremal
functions. The respective constraints can be obtained
from Clauser-Horne-Shimoni-Holt inequality [11]

〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉 ≤ 2, (3)

by spin flips Ai &→ ±Ai, Bj &→ ±Bj . This criterion for ex-
istence of hidden parameters was first proved by Fine [6].

Returning to spin-1 system, consider a cyclic quintu-
plet of unit vectors "i ⊥ "i+1 with the indices taken
modulo 5, see Fig 1. We call it a pentagram. The or-
thogonality implies that squares of spin projection oper-
ators S!i onto directions "i commute for successive indices
[S2
!i

, S2
!i+1

] = 0. We find it more convenient to deal with

the observables Ai = 2S2
!i
− 1 taking values ai = ±1.

They satisfy the following inequality

a1a2 + a2a3 + a3a4 + a4a5 + a5a1 + 3 ≥ 0. (4)

Indeed, the product of the monomials in the left hand
side is equal to 1, hence at least one term is equal to +1,
and the sum of the rest is no less than −4.

Assuming now the existence of a hidden distribution of
all observables ai, and taking the respective expectation
value of Eq. (4) we arrive at the inequality

〈A1A2〉+〈A2A3〉+〈A3A4〉+〈A4A5〉+〈A5A1〉 ≥ −3, (5)

that can be recast into the form

〈S2
!1
〉ψ + 〈S2

!2
〉ψ + 〈S2

!3
〉ψ + 〈S2

!4
〉ψ + 〈S2

!5
〉ψ ≥ 3 (6)

using the identity AiAi+1 = 2S2
!i

+ 2S2
!i+1

− 3 easily de-
rived from Eq. (7) below. We call it the pentagram in-
equality.

_ȥÔ

l
4

l
1

l
2

l
3

l
5

0

FIG. 1: Regular pentagram defined by cyclic quintuplet of unit
vectors !i ⊥ !i+1. State vector |ψ〉 is directed along the symmetry
axis of the pentagram.

Initially the left hand side of the inequality (4) was
found by a computer as an extremal function of the
Vorob’ev–Kellerer cone. The other nontrivial extremal
functions can be obtained from it by flips ai &→ ±ai.
They, however, add no new physical constraints. For
example, a single flip Ai &→ −Ai in Eq. (5) yields the
inequality 〈S2

!i
〉 ≤ 〈S2

!i−2
〉 + 〈S2

!i+2
〉. Since in the penta-

gram "i−2 ⊥ "i+2, then S2
!i−2

+ S2
!i+2

+ S2
ni

= 2 for some
direction ni ⊥ "i±2, and the inequality becomes trivial
〈S2
!i
〉 + 〈S2

ni
〉 ≤ 2.

In summary, the pentagram inequality, in contrast to
the Kochen-Specker theorem, provides a test for arbi-
trary hidden variables model, context-free or not. More-
over, the inequality is sufficient for existence of such a
model for the observables S2

!i
. In addition, it reduces the

number of involved spin projection operators from 31, as
in the best known noncontextual test due to Conway and
Kochen, to 5. As a drawback, the pentagram criterion is
state dependent.

A more careful analysis shows that there is no hid-
den variables test for three-dimensional quantum sys-
tem with less then 5 observables. Furthermore, every
such test with 5 observables Ai by an appropriate scaling
Ai &→ αiAi +βi can be reduced to the inequality (5) for a
complex pentagram "i ⊥ "i+1 ∈ H and Ai = 1− 2|"i〉〈"i|,
cf. Eq. (7). We will provide the details elsewhere.

For further analysis of the pentagram inequality it is
convenient to identify Hilbert space of spin-1 particle
with complexification H = E3 ⊗ C of the physical Eu-
clidean space E3. The spin group SU(2), locally iso-
morphic to SO(3), acts on H by rotations in E3. The
cross product [x, y] = x × y turns Euclidean space E3

into Lie algebra su(2) and allows to express the spin pro-
jection operator as follows S!ψ = i[",ψ]. It has three
eigenstates, one real |0〉! = " and two complex conjugate
|±1〉! = (m± in)/

√
2, where {", m, n} is as an orthonor-

mal basis in E3. So in this picture the neutrally polarized
spin state |0〉! is represented by real vector " ∈ E3. The

p(01 |01) + p(01 |12) + p(01 |23) + p(01 |34) + p(01 |40) ≤ 2



Conceptual Remark

• State Independent Contextuality

• Kochen-Specker original proof

• Cabello 1996

• Peres-Mermin Square…

• State Dependent Contextuality

• KCBS inequality

• n-Cycle inequalities

• Nonlocality 



Usefulness
•Magic State Distillation 

•One can mimic Contextuality using memory

•Contextuality is a resource!

•Processing

•Randomness

•Nonclassicality Certification



Both together
(If time allows)



Generalised 
Bell Scenarios

b1 b2 b3

y3y2y1

a1a2a3

x3 x2 x1

�x ⌦ I I ⌦ �x �x ⌦ �x

I ⌦ �z �z ⌦ I �z ⌦ �z

�x ⌦ �z �z ⌦ �x �y ⌦ �y

�x ⌦ I I ⌦ �x �x ⌦ �x

I ⌦ �z �z ⌦ I �z ⌦ �z

�x ⌦ �z �z ⌦ �x �y ⌦ �y

| i =
⇣
cos

⇡

8
| �i+ sin

⇡

8
|�+i

⌘⌦2

2 PM



Locality Definition
Usual

p(a, b |x, y) = ∑
λ

p(λ) p(a |x, λ) p(b |y, λ)

p(a, b |x, y) = ∑
λ

p(λ) p(a |x, λ) p(b |y, λ)

New

p(a |x, λ), p(b |y, λ)Suitably/Wisely chosen

Temistocles, Rabelo, Terra Cunha, Phys. Rev. A (2019)

Xiao, Ruffolo, Mazzari, Temistocles, Terra Cunha, Rabelo, Xue arXiv 2204.05385



More Nonlocal States

Temistocles, Rabelo, Terra Cunha, Phys. Rev. A (2019)

MEASUREMENT COMPATIBILITY IN BELL NONLOCALITY … PHYSICAL REVIEW A 99, 042120 (2019)

classes of inequalities, all of which are given in Appendix B.
This result should be contrasted to the fact that, in standard
bipartite Bell scenarios where no assumption regarding com-
patibility is made, if the number of measurements of one of the
parties is 2 and they are dichotomic, the only Bell inequality,
up to relabelings, is the CHSH inequality, as has been proven
by Pironio in Ref. [24].

Actually, the compatibility relations we assume can be
implemented in a tripartite Bell scenario, if we assign mea-
surements B0 and B2 to one party (say, Bob0) and B1 and
B3 to another (say, Bob1). Due to this reason, some of the
inequalities we obtain are equivalent to Sliwa’s inequalities
[31] (see discussion in Appendix C), the Bell inequalities
that completely characterize the local polytope in a tripartite
scenario where each party is able to perform two dichotomic
measurements. Note, however, that, had we assumed another
compatibility structure for Bob’s measurements, e.g., if the
compatibility graph G was a pentagon instead of a square,
than it would not be possible to relate the scenario to any
usual Bell scenario, since it would not be possible to assign
subsets of measurements to two or more parties in a way that
is consistent with the the assumed compatibilities [32].

Among the 26 inequalities we obtain, one has the form

2〈B0〉 + 〈(1 − B0)[A0(B1 + B3) + A1(B1 − B3)]〉 ! 2. (15)

Note that the term in square brackets corresponds to the
left-hand side of a CHSH inequality between Alice and mea-
surements 1 and 3 of Bob. To study the quantum violation of
inequality Eq. (15), it is convenient to define observables

Ax = P+|x − P−|x, (16a)

By = Q+|y − Q−|y, (16b)

where Pa|x and Qb|y are projectors associated to outcomes
a and b of measurements x and y, respectively, so the cor-
relators will be evaluated as 〈AxBy〉 = tr(ρAx ⊗ By ), where
By = By1 By2 , and [By1 , By2 ] = 0 for all y ∈ C.

Inequality Eq. (15) is equivalent to the class #4 of Sliwa
[31]. For quantum systems, it is maximally violated up to the
value 4

√
2 − 2, attained by a two-qubit maximally entangled

state embedded in C2 ⊗ C4 [33]. We now show that this
inequality can certify the nonlocality of bipartite quantum
states that do not violate the CHSH inequality.

Consider the following two-parameter family of two-qubit
states

ρ(α,w) = w|ψ (α)〉〈ψ (α)| + (1 − w)|00〉〈00|, (17a)

where

|ψ (α)〉 =
√

α|01〉 +
√

1 − α|10〉. (17b)

This family is known to include the two-qubit states with
highest entanglement (as quantified by negativity and con-
currence) that do not violate the CHSH inequality [34]. We,
then, perform a seesaw optimization, embedding the states
in C2 ⊗ C4 to impose the compatibility relations among the
measurements (details in the Appendix D), and search for
the lowest value of w such that the inequality is violated, for
each α. The results are displayed in Fig. 2, where we also
plot the critical values of w as a function of α for the CHSH

0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

w

CHSH
I3322
I#15

FIG. 2. For states ρ(α,w) defined in Eq. (17), the plot shows
the critical parameter w, as a function of α, above which inequality
Eq. (15) is violated (red circles), above which the CHSH inequality
is violated (black squares), and above which the I3322 inequality is
violated (blue triangles). The points for inequalities Eq. (15) and
I3322 were obtained via a seesaw optimization, and are, hence, upper
bounds on the actual critical points. The points for the CHSH are
exact, obtained by means of Horodecki’s necessary and sufficient
criterium for violation of the CHSH inequality by two-qubit states
[35]. Inequality Eq. (15) is denoted I#15 for consistency with the
Appendices and the data related to the red points, which are available
at Ref. [37].

inequality, provided by means of the Horodecki criterium
[35], and upper bounds on the critical values of w, obtained
by means of a seesaw optimization, for the I3322 inequality
[25]—a relevant Bell inequality in the scenario where Alice
and Bob perform three dichotomic measurements each–,given
by the expression

−〈A1〉 − 〈A2〉 − 〈B1〉 − 〈B2〉 − 〈A1B1〉 − 〈A2B1〉 − 〈A3B1〉
− 〈A1B2〉 − 〈A2B2〉 + 〈A3B2〉 − 〈A1B3〉 + 〈A2B3〉 ! 4.

(18)

In fact, the state ρ(0.80, 0.85) in family Eq. (17) was the
example considered in Ref. [25] of a state that does not
violate the CHSH inequality, that, however, violates I3322. In
Ref. [36], the authors show that, for α = 0.80, inequality I3322
is violated for w ! 0.837, in excellent agreement with the
value 0.838 we obtain, corroborating with the precision of our
lower bounds.

Now, consider the following two-parameter family of two-
qubit states:

σ (α,w) = w|ψ (α)〉〈ψ (α)| + (1 − w)1/4, (19a)

where, as previously,

|ψ (α)〉 =
√

α|01〉 +
√

1 − α|10〉. (19b)

For α = 1/2, the states obtained are locally equivalent to
two-qubit Werner states, known to be entangled for w > 1/3,
and local with respect to projective measurements for

042120-5

ρ(α, w) = w ψ (α)⟩ ⟨ψ (α) + (1 − w) 00⟩ ⟨00

ψ (α)⟩ = α 01⟩ + 1 − α 10⟩



Nonlocality & 
Contextuality

4

FIG. 2. Illustration of the experimental setup. Polarization-
entangled photon pairs are generated via type-I spontaneous
parametric down-conversion where two joint �-BBO crystals
are pumped by a continuous wave diode laser. Qubit is en-
coded in the horizontal and vertical polarizations of one pho-
ton of each pair, while qutrit is encoded in both polarizations
and spatial modes of the other photons of the entangled pairs,
which are split in di↵erent paths dependent on their polariza-
tions via a BD. For Alice, observables Ai are measured via
standard polarization measurements using a HWP and a BD.
For Bob, cascade Mach-Zehnder interferometers for sequen-
tially measuring observables Bj and B(j+1)mod 5 are used to
test the KCBS inequality.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
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NPA curve
Theoretical points
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FIG. 3. Experimental results. The measurements in Eqs. (11)
and (12) and the one-parameter family of states in Eq. (13)
lead to the solid (red) line. Experimental data of ↵CHSH and
�KCBS for specific values of the parameter � are represented
by the black dots and compared to their theoretical predic-
tions (red circles). The points can be separated in three sets:
points 1-4 exhibit only contextuality; points 5-7 exhibit both
nonlocality and contextuality; and points 8-11 exhibit only
nonlocality. Error bars are due to the statistical uncertainty
in photon-number counting. Traced (blue) curve is an outer
bound to the set of quantum behaviors calculated by means
of the Navascués-Pironio-Aćın (NPA) hierarchy [33].

observables given in Eq. (11) is, then, performed in the
qubit photon, while sequential measurements of a pair of
compatible observables given in Eq. (12) are performed
in the qutrit photon. Details of the implementation are
provided in the Supplemental Material [34].

We produce eleven points ↵CHSH � �KCBS, corre-

State �(rad) ↵
th

CHSH ↵
exp

CHSH
�
th

KCBS �
exp

KCBS

| 1i 0 1.1188 1.1043(438) 3.9443 3.9069(518)

| 2i 0.096 1.4293 1.4141(448) 3.9129 3.8728(514)

| 3i 0.192 1.7269 1.7083(438) 3.8199 3.7826(510)

| 4i 0.288 2.0005 1.9813(450) 3.6688 3.6339(536)

| 5i 0.351 2.1622 2.1382(442) 3.5405 3.5034(529)

| 6i 0.421 2.3215 2.2972(446) 3.3739 3.3397(446)

| 7i 0.487 2.4495 2.4246(423) 3.1964 3.1580(506)

| 8i 0.553 2.5536 2.5291(435) 3.0021 2.9684(517)

| 9i 0.631 2.6433 2.6164(451) 2.7556 2.7277(537)

| 10i 0.708 2.6955 2.6739(468) 2.4998 2.4726(555)

| 11i 0.785 2.7075 2.6871(465) 2.2379 2.2065(553)

TABLE I. Experimental data of ↵CHSH and �KCBS for eleven
input states. Error bars are due to the statistical uncertainty
in photon-number counting. States 1-4 violate the KCBS in-
equality but not the CHSH inequality; states 5-7 violate both
inequalities; and states 8-11 violate the CHSH inequality only.

sponding to eleven di↵erent input states | i(�)i (i =
1, · · · , 11). The experimental results on the average val-
ues of the CHSH and KCBS operators are shown in Fig. 3
and Table I. Synchronous violation of both KCBS and
CHSH inequalities are observed for the states | 5(�)i,
| 6(�)i and | 7(�)i with � = 0.351, 0.421, 0.487, respec-
tively. For | 5(�)i, ↵CHSH = 2.1382±0.0442 violates the
local bound of the inequality by 3 standard deviations
and is in a great agreement with the quantum predic-
tion, 2.1622. Also, �KCBS = 3.5034± 0.0529 violates the
noncontextual bound of the KCBS inequality by 9 stan-
dard deviations and is in great agreement with quantum
prediction, 3.5405. For | 6(�)i, the CHSH and KCBS
inequalities are violated by 6 and 7 standard deviations,
respectively. For | 7(�)i, the violations are by 10 and 3
standard deviations, respectively.
To validate non-disturbance in the data and the com-

patibility between pairs of observables of Bob, we com-
puted, for each state, the distance

P
5

j=1
(pj�p

0
j)

2, where
pj is the estimated probability of outcome b = 1 of the
observable Bj measured in one context, and p

0
j is the cor-

responding probability of the same observable measured
in the other context. As shown in Supplementary Ma-
terial, the distances for all the states being tested are
small enough (< 0.0005), which indicates that a very
good level of non-disturbance and compatibility between
observables holds in our experiment.
Conclusion and discussion:— In Ref. [22], the authors

showed that the CHSH inequality and the KCBS inequal-
ity could not be violated simultaneously by quantum sys-
tems. Their proof uses a usual hypothesis for Bell scenar-
ios, that each part makes one measurement per round.
However, since one part is necessarily measuring other
compatible observables in order to show contextuality, it
is natural to use the locality concept of Ref. [32].
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