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Abstract
We present an analysis on quantum simulations of k·p Hamiltonians applying the SSVQE

hybrid algorithm. Using the PennyLane framework we estimate the ground and excited

states for different materials of interest. Also, we make a benchmark of the viability of

NISQ computers to perform band structure calculations. Our results showed the time and

number of cycles needed to run the algorithm with NISQ technology are not competi-

tive with classical simulations. Nevertheless, the k·p approximation allows for the use of

shallow circuits, with limited number of qubits, which is beneficial to deal with nowadays

quantum computers.
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Introduction
• Materials science is benefited by simulations, shortening devices’ development time;

• Increasing the system size is a challenging for classical algorithms. Simulation time

grows exponentially with number of constituents;

• Quantum computers can potentially reduce simulation times, with polynomial growth;

• Nowadays quantum technology - NISQ (Noise Intermediate Quantum) - is a reality,

and can be tested, but are limited to be employed with shallow algorithms;

• Mapping the system with k·p can be a solution to represent periodic systems.

Objectives
We aimed to benchmark the viability of the use of NISQ computers to evaluate band

structure of semiconductor periodic structures using k·p Hamiltonians.

Subspace Search Variational Quantum Eigensolver (SSVQE)

Figura 1: SSVQE framework

• Variational Quantum Eigensolver (VQE) methods form a class of hybrid quantum-

classical algorithm showed to obtain the ground states using NISQ computers (1);

• Excited states require a specialized VQE, namely the SSVQE method (2);

• p-copies of the quantum circuit are initialized with p-orthogonal states |ψp⟩ = |ψ⟩⊗n. p
is the desired number of excited states;

• A weighted cost function is minimized iteratively using both the quantum and classical

processor, returning a set of optimized parameters;

• Once the minimization attains to a minimum, the ansatz becomes unitary mapping the

states |ψp⟩ to the orthonormal eigenstates of the Hamiltonian.

Results

Figura 2: (a) GaAs band structure for the conduction band (red squares), and heavy hole (blue pluses), light hole (orange di-
amonds) and split-off (black circles) states, evaluated using the state vector solver (open symbols), the probabilistic simulator
(full symbols), and numerical diagonalization (dashed lines). Error for the state vector solver (open symbols), and the probabi-
listic simulator (full symbols) for (b) split-off band, (c) heavy hole band, (d) light hole, and (e) conduction band.

Figura 3: [Left](a) In orange, mean time in seconds for convergence of each point in the k-path and in blue the mean time to
complete each cycle of convergence attempt. (b) Filled bars is the mean number of cycles to complete the convergence, thin
black bars represent the maximum and minimum number of cycle for a point. [Right] Simulation for 6 other band structures

Conclusions
We presented an evaluation of feasibility and benchmark of the use of quantum computers

in favor of materials problems, in special the calculation of band structures of periodic

semiconductors compounds. We employed the exact state vector solver and the real de-

vice simulator. In comparison to direct diagonalization of the Hamiltonian both machines

were able to return the band structure of a couple of semiconductor structures. The simu-

lation time is directly dependent on the ansatz depth and the diagonalization method. The

results showed the possibility of simulating semiconductor band structures, however the

time used in the simulations is still not competitive with the classical solution. Notwiths-

tanding, the use of k·p method allows for shallow circuits, which is mandatory with NISQ

computers.
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