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Abstract
Research in the quantum key distribution (QKD) field has turned to the analysis of pro-

tocols using continuous-variable (CV) quantum states with discrete modulation (DM)

schemes to generate random secret cryptographic keys, called DM-CVQKD protocols.

Despite these protocols being experimentaly convenient, it comes with pertinent open

problems concerning the protocol security against arbitrary attacks and which constella-

tions best optimize the protocol’s performance. In this extended abstract, we present a

QAM constellation based on the Gauss-quadrature modulation and use the results in [2]

to compute a lower bound to the secret key rate.

Key-Worlds: Semidefinite Programming, Gauss-Quadrature Constellation, DM-

CVQKD.

Introduction
Given a constellation of coherent states with amplitudes αk and probability distribution

pk, Alice’s state is in the mixture represented by τ =
∑

k pk |αk⟩⟨αk|, which are transmit-

ted to Bob through the quantum channel. Bob, in his turn, measures the received states

and, based on his measurements, Alice and him must infer if it is secure to distill a secret

key. This security analysis is better accessed by an equivalent entangled-based protocol.

In this case, Alice prepares a bipartite state |Φ⟩AA′ which it is a purification of the modu-

lation τ . The problem is, given the observations βk of Bob, to estimate the correlations

between Alice and Bob without making any assumptions about the channel connecting

Alice and Bob represented by the map NA′→B that transforms the initial state as

ρ̂AB = (1A ⊗NA′→B)(|Φ⟩⟨Φ|AA′). (1)

Objectives
Compare the performance of several m-QAM like constellations concerning the secret

key rate of CVQKD protocols, given by

K = βI(X ;Y )− sup
NA′→B

χ(Y ;E) (2)

Secret Key Rate Computation
The secret key rate is a function of an upper bound on the eavesdroppper information,

which is obtained by lower bounding the correlation between Alice and Bob. One so-

lution for this problem were provided in [2], where the authors defined the following

semidefinite program (SDP)

minimize tr
(
(âb̂ + â†b̂†) · ρ̂AB

)
subject to trB(ρ̂AB) = τ,

tr
(
ρ̂AB(Π⊗ b̂†b̂)

)
= nB,

tr(ρ̂AB(
∑

k
⟨αk|âτ |αk⟩ |ψk⟩⟨ψk| ⊗ b̂ + h.c.)) = c1,

tr(ρ̂AB(
∑

k
ᾱk |ψk⟩⟨ψk| ⊗ b̂ + h.c.)) = c2,

ρ̂AB ⪰ 0.

(3)

where âb̂ + â†b̂† is the operator corresponding to the covariance therm of the cova-

riance matrix of ρ̂AB, âτ = τ 1/2âτ−1/2, Π =
∑

k |ψk⟩⟨ψk| is a projector on the rele-

vant subspace of τ with orthonormal bases |ψk⟩, nB is the average energy measured

by Bob and c1 and c2 correlation quantities that can be experimentally estimated with

c1 = Re
{∑

k pk ⟨αk|âτ |αk⟩βk
}

and c2 = Re{
∑

k pkᾱkβk}.

Results
We aim to use the bounds provided by the semidefinite program and compare the perfor-

mance of the constellations presented in [2] with a Gauss-Quadrature QAM-like cons-

tellation. The Gauss-quadrature constellation is defined as follows [3]. For a standard

Gaussian density function pX(x) = 1√
2π
e−x

2/2, we denote the N -th Hermite polynomial

HN and the set of weights {wi,N} obtained by the N roots {xi,N} of HN . Then, the

Gauss quadrature constellation (GQ) is made up of the amplitudes AGQ = {xi,N} and the

probability distribution PGQ = {wi,N}. As the N roots {xi,N} are real valued, a QAM

constellation is obtained by the Cartesian product AGQ × AGQ. In Figures 1 and 2 we

potted the SKR for the GQ m-QAM constellation, alongside the constellations presented

in [2], using the lower bound provided by the SDP.
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Figura 1: Secret key rate lower bounds for the DG, RW and GQ constellations. The simulated parameters were β = 0.95,
ξ = 0.06, T = 10−0.02D and VA = 3.8.
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Figura 2: Secret key rate lower bounds for the DG, RW and GQ constellations. The simulated parameters were β = 0.95,
ξ = 0.06, T = 10−0.02D and VA = 5.

Conclusions
We plotted in Figures 1 and 2 the secret key rate computed with the SDP for the Gauss-

quadrature QAM constellation, as defined above, and compared with the constellations

presented in [2], witch are the discrete Gaussian distribution (DG) and the normalized

random walk (RW). The results show that the proposed constellation outperforms both

the DG and RW and approximates the continuous Gaussian modulation, being almost

indistinguishable when the the constellation size is 1024.
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