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Abstract
We present an information reconciliation protocol designed for continuous variable QKD

using the Distributional Transform. By combining tools from copula and information

theories, we present a method for extracting independent symmetric Bernoulli bits for

Gaussian-modulated CVQKD protocols, which we called the Distributional Transform

Expansion (DTE).
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Introduction
In a Gaussian modulated CVQKD protocol, Alice prepares a coherent state |αi⟩, where

αi = qi + jpi comes from realizations of i.i.d. random variables Q ∼ P ∼ N (0, Ṽm).

She sends it to Bob through a quantum channel and, at reception, Bob will perform ho-

modyne1 detection, randomly switching between quadratures. After N rounds and ex-

cluding a subset of size m used during parameter estimation, Alice and Bob keep the

matching values, owning the sequences Xn = x1, · · · , xn and YN = x1, · · · , yn, respec-

tively, with n = N − m. The task is to extract random binary sequences from the real

valued vectors Xn and Yn to be further reconciliated (error correction).

Objectives
Our main objective is to propose an information reconciliation protocol to solve the pro-

blem presented in the previous section.

Reconciliation Protocol
Our proposed solution begins with the following theorem [1, Theorem 1.2.6].

Theorem 1. Let X be a random variable with distribution function FX and F
(−1)
X its quasi-

inverse. Then,

1. If FX is continuous, then U = FX(X) is uniformly distributed on [0, 1].

2. If U is a uniformly distributed random variable on [0, 1], then Y = F
(−1)
X (U) has distri-

bution function according to FX.

The transformation mentioned in the first part of Theorem 1 is known as the Distribu-

tional Transform and ensures that transforming a random variable by its continuous dis-

tribution function always leads to a uniform distribution on the unit interval. A number

d ∈ [0, 1] can be expanded in the binary basis with l bit precision according to

d 7→ 0.b1b2 · · · bl,
l−1∑
i=1

bi
1

2i
≤ d ≤

l−1∑
i=1

bi
1

2i
+

1

2l
, (1)

and we call b = b1b2 · · · bl the corresponding bit sequence.

Definition 1. Let X be a random variable with continuous l distribution function FX and

Q : [0, 1] 7→ {0, 1}l a function giving a binary expansion as in Equation (1). The Distri-

butional Transform Expansion (DTE) is defined as

D(X) = Q (FX(X)) . (2)

Once the bits in binary the expansion are independent [2, Lemma 13.3.1], it is pos-

sible to factor D(X) = D1(X) · · · Dl(X), where Di(X) = Qi (FX(X)) is the function

Q : [0, 1] 7→ {0, 1} computing the i-th bit in Equation (1) and Di ∼ Bern(12). We call

l −D(X) the DTE expansion of F with length l.

Alice and Bob can use the DTE to produce binary sequences from their continuous-

valued data:

1. Alice and Bob has the sequences of Gaussian variables X = X1, . . . , Xn and Y =

Y1, . . . , Yn after quantum communication and parameter estimation;

2. Alice (Bob in RR) compute D(X) = (D1(X) · · · Dl(X))T (and D(Y ) =

(D1(Y ) · · · Dl(Y ))T in RR). The resulting bit sequence can be expressed as the ma-

trices,

X 7→


D1(X1) · · · D1(Xn)

D2(X1) · · · D2(Xn)

... . . . ...

Dl(X1) · · · Dl(Xn)

 , (3) Y 7→


D1(Y1) · · · D1(Yn)

D2(Y1) · · · D2(Yn)

... . . . ...

Dl(Y1) · · · Dl(Yn)

 . (4)

3. Each one of the l pairs of sequences (Di(X), Y ) (and (Di(Y ), X) in RR] induce a

Binary-Input AWGN channel and Bob (Alice in RR) can retrieve Alice’s (Bob’s in RR)

binary sequences by using an error correcting code.

Example 1. Let X ∼ N (0, 1), Z ∼ N (0, 0.5) with X ⊥ Z and Y = X +

Z. Assume the realizations x = {0.491, 0.327,−0.652,−1.096,−0.023} and z =

{−0.722, 0.942, 0.191, 0.198,−0.370}. Then,

FX(x) = (0.688, 0.628, 0.257, 0.136, 0.491)

7→


1 1 0 0 0

0 0 1 0 1

1 1 0 1 1


FY (y) = (0.425, 0.850, 0.353, 0.231, 0.374)

7→


0 1 0 0 0

1 1 1 0 1

1 0 0 1 0



Experimental Results
With the procedure described above, one has a method to extract l independent

bits from each raw key elements. The maximal reconciliation efficiency, β←max =∑l
i=1 I(Di(Y );X)/I(X ;Y ) for reverse reconciliation (X and Y are swapped in direct

reconciliation), were estimated and plotted in Figure 1.
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Figura 1: (a) Maximum reconciliation efficiency reached by l-DTE with l ∈ {2, 3, 4} (black, red and blue plots, respectively),
Ṽm = 1 and ξ = 0.02. Solid and dashed lines correspond to the efficiency considering RR with heterodyne and homodyne de-
tection, respectively. Cross and circle marks refer to direct reconciliation (heterodyne and homoyne detection, respectively); (b)
Conditional entropy H(Di(Y )|X).

Conclusions
We have presented an information reconciliation protocol designed for Continuous-

Variable QKD using the Distributional Transform, a tool from copula theory. Together

with arguments from information theory, it was made possible to extract bit sequences

from Gaussian random variables whose bits are undoubtedly independent. We showed

that each bit in the binary expansion can be treated as an independent channel and its ca-

pacities where estimated considering direct and reverse reconciliation for homodyne and

heterodyne detection. We also derived the expressions for the reconciliation efficiency

in both reconciliation directions and the results showed that the maximum efficiency is

reached in protocols with heterodyne detection and at low SNR. More specifically, it is

possible to reach β←max > 0.9 for SNRhet < −3.6 dB with a DTE of four bits. Future work

could focus on the design of error correcting codes for the DTE induced sub-channels.
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1The problem can be generalized to heterodyne detection with adjusted parameters.


